Finite Element Spaces for Linear Saddle Point Problems

  • Volker John
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 51)


This chapter deals with the first difficulty inherent to the incompressible Navier–Stokes equations, see Remark  2.19, namely the coupling of velocity and pressure. The characteristic feature of this coupling is the absence of a pressure contribution in the continuity equation. In fact, the continuity equation can be considered as a constraint for the velocity and the pressure in the momentum equation as a Lagrangian multiplier. This kind of coupling is called saddle point problem.


Linear Saddle Point Problem Taylor-Hood Finite Element Incompressible Navier-Stokes Equations Pressure Contribution Fortin Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21:337–344MathSciNetCrossRefzbMATHGoogle Scholar
  2. Arnold DN, Boffi D, Falk RS (2002) Approximation by quadrilateral finite elements. Math Comp 71:909–922 (electronic)Google Scholar
  3. Babuška I (1970/1971) Error-bounds for finite element method. Numer Math 16:322–333MathSciNetCrossRefzbMATHGoogle Scholar
  4. Babuška I (1972/1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bercovier M, Pironneau O (1979) Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer Math 33:211–224MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bernardi C, Raugel G (1985) Analysis of some finite elements for the Stokes problem. Math Comp 44:71–79MathSciNetCrossRefzbMATHGoogle Scholar
  7. Boffi D (1994) Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations. Math Models Methods Appl Sci 4:223–235MathSciNetCrossRefzbMATHGoogle Scholar
  8. Boffi D (1997) Three-dimensional finite element methods for the Stokes problem. SIAM J Numer Anal 34:664–670MathSciNetCrossRefzbMATHGoogle Scholar
  9. Boffi D, Brezzi F, Fortin M (2008) Finite elements for the Stokes problem. In: Boffi D, Gastaldi L (eds) Mixed finite elements, compatibility conditions, and applications. Lecture notes in mathematics, vol 1939. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006. Springer, Berlin, pp 45–100Google Scholar
  10. Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer series in computational mathematics, vol 44. Springer, Heidelberg, pp xiv+685Google Scholar
  11. Boland JM, Nicolaides RA (1983) Stability of finite elements under divergence constraints. SIAM J Numer Anal 20:722–731MathSciNetCrossRefzbMATHGoogle Scholar
  12. Boland JM, Nicolaides RA (1985) Stable and semistable low order finite elements for viscous flows. SIAM J Numer Anal 22:474–492MathSciNetCrossRefzbMATHGoogle Scholar
  13. Braess D, Blömer C (1990) A multigrid method for a parameter dependent problem in solid mechanics. Numer Math 57:747–761MathSciNetCrossRefzbMATHGoogle Scholar
  14. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev Française Automat Informat Recherche Opérationnelle Sér. Rouge 8:129–151MathSciNetzbMATHGoogle Scholar
  15. Brezzi F, Bathe K-J (1990) A discourse on the stability conditions for mixed finite element formulations. Comput Methods Appl Mech Eng 82:27–57. Reliability in computational mechanics (Austin, TX, 1989)Google Scholar
  16. Brezzi F, Falk RS (1991) Stability of higher-order Hood-Taylor methods. SIAM J Numer Anal 28:581–590MathSciNetCrossRefzbMATHGoogle Scholar
  17. Carroll R, Duff G, Friberg J, Gobert J, Grisvard P, Nečas J, Seeley R (1966) Équations aux dérivées partielles. Séminaire de Mathématiques Supérieures. 19. Montréal: Les Presses de l’Université de Montréal. 142 pGoogle Scholar
  18. Chizhonkov EV, Olshanskii MA (2000) On the domain geometry dependence of the LBB condition. M2AN Math Model Numer Anal 34:935–951Google Scholar
  19. Ciarlet P Jr, Huang J, Zou J (2003) Some observations on generalized saddle-point problems. SIAM J Matrix Anal Appl 25:224–236MathSciNetCrossRefzbMATHGoogle Scholar
  20. Constantin P, Foias C (1988) Navier-Stokes equations. Chicago lectures in mathematics. University of Chicago Press, Chicago, IL, pp x+190Google Scholar
  21. Cools R, Rabinowitz P (1993) Monomial cubature rules since “Stroud”: a compilation. J Comput Appl Math 48:309–326MathSciNetCrossRefzbMATHGoogle Scholar
  22. Crouzeix M, Raviart P-A (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7:33–75MathSciNetzbMATHGoogle Scholar
  23. Cuff VM, Dunca AA, Manica CC, Rebholz LG (2015) The reduced order NS-α model for incompressible flow: theory, numerical analysis and benchmark testing. ESAIM Math Model Numer Anal 49:641–662MathSciNetCrossRefzbMATHGoogle Scholar
  24. Demkowicz L (2006) Babuška ↔ Brezzi?? ICES Report 06-08, The University of Texas at Austin, Institute for Computational Engineering and SciencesGoogle Scholar
  25. Duvaut G, Lions J-L (1972) Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, vol 21. Dunod, Paris, pp xx+387Google Scholar
  26. Ern A, Guermond J-L (2004) Theory and practice of finite elements. Applied mathematical sciences, vol 159. Springer, New York, pp xiv+524Google Scholar
  27. Fortin M (1977) An analysis of the convergence of mixed finite element methods. RAIRO Anal Numér 11:341–354, iiiMathSciNetzbMATHGoogle Scholar
  28. Friedrichs KO (1947) On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann Math (2) 48:441–471Google Scholar
  29. Fuhrmann J, Linke A, Langmach H, Baltruschat H (2009) Numerical calculation of the limiting current for a cylindrical thin layer flow cell. Electrochim Acta 55:430–438CrossRefGoogle Scholar
  30. Fuhrmann J, Linke A, Langmach H (2011) A numerical method for mass conservative coupling between fluid flow and solute transport. Appl Numer Math 61:530–553MathSciNetCrossRefzbMATHGoogle Scholar
  31. Galdi GP (2011) An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Springer monographs in mathematics, 2nd edn. Springer, New York, pp xiv+1018Google Scholar
  32. Girault V, Raviart P-A (1986) Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer series in computational mathematics, vol 5. Springer, Berlin, pp x+374Google Scholar
  33. Girault V, Scott LR (2003) A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40:1–19MathSciNetCrossRefzbMATHGoogle Scholar
  34. Gresho P, Sani R (2000) Incompressible flow and the finite element method. Vol 1: advection-diffusion. Vol 2: isothermal laminar flow. Wley, Chichester, p 1112zbMATHGoogle Scholar
  35. Gunzburger MD (2002) The inf-sup condition in mixed finite element methods with application to the Stokes system. In: Collected lectures on the preservation of stability under discretization (Fort Collins, CO, 2001). SIAM, Philadelphia, PA, pp 93–121Google Scholar
  36. Guzmán J, Salgado AJ, Sayas F-J (2013) A note on the Ladyženskaja-Babuška-Brezzi condition. J Sci Comput 56:219–229MathSciNetCrossRefzbMATHGoogle Scholar
  37. Hood P, Taylor C (1974) Navier–Stokes equations using mixed interpolation. In: Oden JT, Gallagher RH, Zienkiewicz OC, Taylor C (eds) Finite element methods in flow problems Huntsville Press, University of Alabama, pp 121–132Google Scholar
  38. Horgan CO (1995) Korn’s inequalities and their applications in continuum mechanics. SIAM Rev 37:491–511MathSciNetCrossRefzbMATHGoogle Scholar
  39. John V, Kindl A, Suciu C (2010) Finite element LES and VMS methods on tetrahedral meshes. J Comput Appl Math 233:3095–3102MathSciNetCrossRefzbMATHGoogle Scholar
  40. John V, Linke A, Merdon C, Neilan M, Rebholz LG (2016) On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Review (in press)Google Scholar
  41. Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, vol 2. Gordon and Breach, Science Publishers, New York/London/Paris, pp xviii+224Google Scholar
  42. Mardal K-A, Schöberl J, Winther R (2013) A uniformly stable Fortin operator for the Taylor-Hood element. Numer Math 123:537–551MathSciNetCrossRefzbMATHGoogle Scholar
  43. Matthies G (2001) Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer Algorithms 27:317–327MathSciNetCrossRefzbMATHGoogle Scholar
  44. Matthies G, Tobiska L (2002) The inf-sup condition for the mapped Q k-P k−1 disc element in arbitrary space dimensions. Computing 69:119–139MathSciNetCrossRefzbMATHGoogle Scholar
  45. Matthies G, Tobiska L (2005) Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer Math 102:293–309MathSciNetCrossRefzbMATHGoogle Scholar
  46. Qin J (1994) On the convergence of some low order mixed finite elements for incompressible fluids. PhD thesis, Department of Mathematics, Pennsylvania State UniversityGoogle Scholar
  47. Rannacher R, Turek S (1992) Simple nonconforming quadrilateral Stokes element. Numer Methods Partial Differ Equ 8:97–111MathSciNetCrossRefzbMATHGoogle Scholar
  48. Schieweck F (1997) Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Habilitation thesis, Magdeburg: Univ. Magdeburg, Fakultät Mathematik, pp 142Google Scholar
  49. Scott LR, Vogelius M (1985) Conforming finite element methods for incompressible and nearly incompressible continua. Large-scale computations in fluid mechanics, Part 2 (La Jolla, CA, 1983). Lectures in applied mathematics, vol 22. American Mathematical Society, Providence, RI, pp 221–244Google Scholar
  50. Sohr H (2001) The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, pp x+367Google Scholar
  51. Stenberg R (1984) Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math Comp 42:9–23MathSciNetzbMATHGoogle Scholar
  52. Stenberg R (1987) On some three-dimensional finite elements for incompressible media. Comput Methods Appl Mech Eng 63:261–269MathSciNetCrossRefzbMATHGoogle Scholar
  53. Stenberg R (1990) Error analysis of some finite element methods for the Stokes problem. Math Comp 54:495–508MathSciNetCrossRefzbMATHGoogle Scholar
  54. Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall series in automatic computation. Prentice-Hall, Inc., Englewood Cliffs, NJ, pp xiii+431Google Scholar
  55. Temam R (1984) Navier-Stokes equations. Theory and numerical analysis. Studies in mathematics and its applications, vol 2, 3rd edn. North-Holland Publishing Co., Amsterdam, pp xii+526. With an appendix by F. ThomassetGoogle Scholar
  56. Verfürth R (1984) Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal Numér 18:175–182MathSciNetzbMATHGoogle Scholar
  57. Xu J, Zikatanov L (2003) Some observations on Babuška and Brezzi theories. Numer Math 94:195–202MathSciNetCrossRefzbMATHGoogle Scholar
  58. Zhang S (2005) A new family of stable mixed finite elements for the 3D Stokes equations. Math Comp 74:543–554MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Volker John
    • 1
    • 2
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations