Skip to main content

Scaling Behavior of Human Mobility Distributions

  • Conference paper
  • First Online:
Geographic Information Science (GIScience 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9927))

Included in the following conference series:

Abstract

Recent technical advances have made high-fidelity tracking of populations possible. However, these datasets, such as GPS traces, can be comprised of millions of records, well beyond what even a skilled analyst can digest. To facilitate human analysis, these records are often expressed as aggregate distributions capturing behaviors of interest. While these aggregate distributions can provide substantial insight, the spatio-temporal resolution at which they are captured can impact the shape of the resulting distribution. We present an analysis of five spatial datasets, and codify the impact of rebinning the data at different spatio-temporal resolutions. We find that all aggregate metrics considered are affected by rebinning, but that some distributions do so regularly and predictably, while others do not. This work provides important insight into which metrics can be used to compare human behavior across datasets and the kinds of relationships between that can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nutonian.com/products/eureqa-server/.

  2. 2.

    https://www.r-project.org/.

References

  1. Ahas, R., Aasa, A., Silm, S., Aunap, R., Kalle, H., Mark, Ü.: Mobile positioning in space-time behaviour studies: social positioning method experiments in Estonia. Cartography Geogr. Inf. Sci. 34(4), 259–273 (2007)

    Article  Google Scholar 

  2. Arribas-Bel, D.: Accidental, open and everywhere: emerging data sources for the understanding of cities. Appl. Geogr. 49, 45–53 (2014)

    Article  Google Scholar 

  3. Barrat, A., Fernandez, B., Lin, K.K., Young, L.S.: Modeling temporal networks using random itineraries. Phys. Rev. Lett. 110(15), 158702 (2013)

    Article  Google Scholar 

  4. Bell, S., Wilson, K., Bissonnette, L., Shah, T.: Access to primary health care: does neighborhood of residence matter? Annals Assoc. Am. Geogr. 103(1), 85–105 (2013)

    Article  Google Scholar 

  5. Dark, S.J., Bram, D.: The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31(5), 471–479 (2007)

    Article  Google Scholar 

  6. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  7. Gabriel, A.K., Goldstein, R.M., Zebker, H.A.: Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res.: Solid Earth 94(B7), 9183–9191 (1989)

    Article  Google Scholar 

  8. Goodchild, M.F.: Giscience, geography, form, and process. Annals Assoc. Am. Geogr. 94(4), 709–714 (2004)

    Google Scholar 

  9. Hashemian, M., Knowles, D., Calver, J., Qian, W., Bullock, M.C., Bell, S., Mandryk, R.L., Osgood, N., Stanley, K.G.: iEpi: an end to end solution for collecting, conditioning and utilizing epidemiologically relevant data. In: Proceedings of the 2nd ACM International Workshop on Pervasive Wireless Healthcare, pp. 3–8. ACM (2012)

    Google Scholar 

  10. Hashemian, M.S., Stanley, K.G., Knowles, D.L., Calver, J., Osgood, N.D.: Human network data collection in the wild: the epidemiological utility of micro-contact and location data. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 255–264. ACM (2012)

    Google Scholar 

  11. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In: INFOCOM 2006, 25th IEEE International Conference on Computer Communications. Proceedings, pp. 1–13, April 2006

    Google Scholar 

  12. Knowles, D.L., Stanley, K.G., Osgood, N.D.: A field-validated architecture for the collection of health-relevant behavioural data. In: 2014 IEEE International Conference on Healthcare Informatics (ICHI), pp. 79–88. IEEE (2014)

    Google Scholar 

  13. Kos, T., Grgic, M., Sisul, G.: Mobile user positioning in GSM/UMTS cellular networks. In: 48th International Symposium ELMAR-2006 Focused on Multimedia Signal Processing and Communications, pp. 185–188. IEEE (2006)

    Google Scholar 

  14. Kwan, M.P.: Algorithmic geographies: big data, algorithmic uncertainty, and the production of geographic knowledge. Annals. Am. Assoc. Geogr. 106(2), 274–282 (2016)

    Google Scholar 

  15. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: SLAW: a new mobility model for human walks. In: INFOCOM 2009, pp. 855–863. IEEE, April 2009

    Google Scholar 

  16. Miller, H.J., Goodchild, M.F.: Data-driven geography. GeoJournal 80(4), 449–461 (2015)

    Article  Google Scholar 

  17. Modsching, M., Kramer, R., ten Hagen, K.: Field trial on GPS accuracy in a medium size city: the influence of built-up. In: 3rd Workshop on Positioning, Navigation and Communication, pp. 209–218 (2006)

    Google Scholar 

  18. Muhajarine, N., Katapally, T.R., Fuller, D., Stanley, K.G., Rainham, D.: Longitudinal active living research to address physical inactivity and sedentary behaviour in children in transition from preadolescence to adolescence. BMC Public Health 15(1), 1–9 (2015). http://dx.doi.org/10.1186/s12889-015-1822-2

    Article  Google Scholar 

  19. Openshaw, S., Openshaw, S.: The Modifiable Areal Unit Problem. Geo Abstracts, University of East Anglia, Norwich (1984)

    Google Scholar 

  20. Openshaw, S., Taylor, P.J.: A million or so correlation coefficients: three experiments on the modifiable areal unit problem. Stat. Appl. Spat. Sci. 21, 127–144 (1979)

    Google Scholar 

  21. Qian, W., Stanley, K.G., Osgood, N.D.: The impact of spatial resolution and representation on human mobility predictability. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 25–40. Springer, Heidelberg (2013)

    Google Scholar 

  22. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Networking 19(3), 630–643 (2011)

    Article  Google Scholar 

  23. Smith, G., Wieser, R., Goulding, J., Barrack, D.: A refined limit on the predictability of human mobility. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 88–94. IEEE (2014)

    Google Scholar 

  24. Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)

    Article  Google Scholar 

  25. Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility supplementary material. Nat. Phys. 6(10), 1–20 (2010)

    Article  Google Scholar 

  26. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stanley, K., Bell, S., Kreuger, L.K., Bhowmik, P., Shojaati, N., Elliot, A., Osgood, N.D.: Opportunistic natural experiments using digital telemetry: a transit disruption case study. Int. J. Geogr. Inf. Sci. (to appear)

    Google Scholar 

  28. Sui, D., Goodchild, M.: The convergence of GIS and social media: challenges for giscience. Int. J. Geogr. Inf. Sci. 25(11), 1737–1748 (2011)

    Article  Google Scholar 

  29. Versichele, M., Neutens, T., Claeys Bouuaert, M., Van de Weghe, N.: Time-geographic derivation of feasible co-presence opportunities from network-constrained episodic movement data. Trans. GIS 18(5), 687–703 (2014)

    Article  Google Scholar 

  30. Wu, X., Mazurowski, M., Chen, Z., Meratnia, N.: Emergency message dissemination system for smartphones during natural disasters. In: 2011 11th International Conference on ITS Telecommunications (ITST), pp. 258–263. IEEE (2011)

    Google Scholar 

  31. Yuan, Y., Raubal, M., Liu, Y.: Correlating mobile phone usage and travel behavior-a case study of Harbin, China. Comput. Environ. Urban Syst. 36(2), 118–130 (2012)

    Article  Google Scholar 

  32. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Natural Sciences and Engineering Research Council of Canada for providing funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuhin Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Paul, T., Stanley, K., Osgood, N., Bell, S., Muhajarine, N. (2016). Scaling Behavior of Human Mobility Distributions. In: Miller, J., O'Sullivan, D., Wiegand, N. (eds) Geographic Information Science. GIScience 2016. Lecture Notes in Computer Science(), vol 9927. Springer, Cham. https://doi.org/10.1007/978-3-319-45738-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45738-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45737-6

  • Online ISBN: 978-3-319-45738-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics