Skip to main content

Switched Capacitor-Based Power Electronic Converter—Optimization of High Frequency Resonant Circuit Components

  • Chapter
  • First Online:
Advanced Control of Electrical Drives and Power Electronic Converters

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 75))

Abstract

This chapter presents issues of optimization of the resonant circuit components’ volume in a switched-capacitor voltage multiplier (SCVM). The SCVM is derived from chip-scale technology but can effectively operate as a power electronic converter in a zero current switching mode when the recharging of switched capacitors occurs in a resonant circuit supported by an inductance. Selection of the passive LC components is not strictly determined, and depends on the optimization strategy according to the volume, efficiency or cost of the converter. Optimization of the volume of LC components is limited by the energy transfer ability via switched capacitors, thus by the rated power of the converter and switching frequency. Depending on the LC values, the converter operates in some specific states that determine the efficiency of the converter and voltage stress on semiconductor switches and diodes. This chapter presents analysis of the converter parameters and operation in the cases of optimization of the resonant circuit components’ values. The analytical discussion is also supported by the simulation and experimental results. All the results are provided for the SCVM but can be useful for a variety of switched-capacitor resonant power converters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioinovici A (2001) Switched-capacitor power electronics circuits. Circ Syst Mag 1(3):37–42. doi:10.1109/7384.963467 (Third Quarter)

  2. Yeung YPB, Cheng KWE, Ho S, Law LKK, Sutanto D (2004) Unified analysis of switched-capacitor resonant converters. IEEE Trans Ind Electron 51(4):864–873. doi:10.1109/TIE.2004.831743

    Article  Google Scholar 

  3. Cao D, Jiang S, Peng FZ (2013) Optimal design of a multilevel modular capacitor-clamped DC–DC converter. IEEE Trans Power Electron 28(8):3816–3826. doi:10.1109/TPEL.2012.2231438

    Article  Google Scholar 

  4. Stala R, Mondzik A, Kawa A (2016) Resonant-mode switched-capacitor DC-DC converter with inductance on PCB. An analysis and comparison of parameters. Przegląd Elektrotechniczny, 04:205–209. doi:10.15199/48.2016.04.45

  5. Kawa A, Mondzik A, Penczek A, Piróg S, Stala R (2016) Real time, optimal switching frequency calculation for thyristor based DC-DC resonant switched capacitor voltage multiplier. Przegląd Elektrotechniczny. 6:25–31. doi:10.15199/48.2016.06.05 (in Polish)

    Google Scholar 

  6. Muller L, Kimball JW (2014) A dynamic model of switched-capacitor power converters. IEEE Trans Power Electron 29(4):1862–1869. doi:10.1109/TPEL.2013.2264756

    Article  Google Scholar 

  7. Cao D, Peng FZ (2010) A family of zero current switching switched-capacitor dc-dc converters. In: Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), pp 1365–1372

    Google Scholar 

  8. Cao D, Peng FZ (2010) Zero-current-switching multilevel modular switched-capacitor DC–DC converter. IEEE Trans Ind Appl 46(6):2536–2544. doi:10.1109/ECCE.2009.5316088

    Article  Google Scholar 

  9. Lee YS, Ko YP, Cheng MW, Liu LJ (2013) Multiphase zero-current switching bidirectional converters and battery energy storage application. IEEE Trans Power Electron 28(8):3806–3815. doi:10.1109/TPEL.2012.2227822

    Article  Google Scholar 

  10. Ye Y, Cheng KWE, Liu J, Xu C (2014) A family of dual-phase-combined zero-current switching switched-capacitor converters. IEEE Trans Power Electron 29(8):4209–4218. doi:10.1109/TPEL.2013.2290733

    Article  Google Scholar 

  11. Hamo E, Cervera A, Peretz MM (2015) Multiple conversion ratio resonant switched-capacitor converter with active zero current detection. IEEE Trans Power Electron 30(4):2073–2083. doi:10.1109/TPEL.2014.2326005

    Article  Google Scholar 

  12. Zotov LG (2011) Two-level DC current power-exchange system based on structures with switched capacitors for autonomous power systems. Russ Electr Eng 82(7):388–393. doi:10.3103/S1068371211070133

  13. Parastar A, Seok JK (2015) High-gain resonant switched-capacitor cell-based DC/DC converter for offshore wind energy systems. IEEE Trans Power Electron 30(2):644–656. doi:10.1109/TPEL.2014.2314110

    Article  Google Scholar 

  14. Keiser O, Steimer PK, Kolar JW (2008) High power resonant switched-capacitor step-down converter. In: IEEE power electronics specialists conference, Rhodes, pp 2772–2777. doi:10.1109/PESC.2008.4592365

  15. Mondzik A, Kawa A, Piróg S, Penczek A, Stala R (2016) Optymalizacja kształtu prądu wejściowego tyrystorowego przekształtnika z przełączanymi kondensatorami podnoszącego napięcie stałe o ładowaniu kolejnościowym. Zagadnienia maszyn, napędów i pomiarów elektrycznych, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, nr 71:16–28 (in Polish)

    Google Scholar 

  16. Stala R, Mondzik A, Kawa A, Penczek A, Piróg S (2016) An analysis of overload conditions in Mosfet-based power resonant DC-DC step-up converters in switched capacitor voltage multiplier topology. Przegląd Elektrotechniczny 05:78–83. doi:10.15199/48.2016.05.15

    Google Scholar 

  17. Kawa A, Stala R, Mondzik A, Pirog S, Penczek A (2016) High power thyristor-based DC-DC switched-capacitor voltage multipliers. Basic concept and novel derived topology with a reduced number of switches. IEEE Trans Power Electron 31(10):6797–6813. doi:10.1109/TPEL.2015.2505906

    Google Scholar 

  18. Mak O-C, Wong Y-C, Ioinovici A (1995) Step-up DC power supply based on a switched-capacitor circuit. IEEE Trans Ind Electron 42(1):90–97. doi:10.1109/41.345851

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Waradzyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waradzyn, Z., Stala, R., Mondzik, A., Piróg, S. (2017). Switched Capacitor-Based Power Electronic Converter—Optimization of High Frequency Resonant Circuit Components. In: Kabziński, J. (eds) Advanced Control of Electrical Drives and Power Electronic Converters. Studies in Systems, Decision and Control, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-45735-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45735-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45734-5

  • Online ISBN: 978-3-319-45735-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics