Skip to main content

Shock Wave and High-Pressure Phenomena

  • Chapter
  • First Online:
Dimensional Analysis Beyond the Pi Theorem
  • 1490 Accesses

Abstract

The propagation of self-sustained gaseous detonations either implosion or explosion is a complex, multidimensional process involving interactions between incident shocks, Mach stems, transverse waves, and boundaries of the regions through which the detonation is moving. In this chapter, we are interested in problems that fall into one-dimensional process categories in particular when they are involved with an implosion or explosion of homogeneous and symmetric types. Self-similarity offers an excellent simplified solution, by reducing complex sets of equation to some simple ordinary sets of differential equations, where a simple exact solution can be found. Here we study well-known problems of implosion and explosion of symmetry nature, where a three-dimensional problem has reduced to one-dimensional status and obeying either Lagrangian or Eulerian schema or in some cases the problem has followed an Arbitrary Lagrangian–Eulerian (ALE) roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.I. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. A 201, 159–174 (1950)

    Article  MATH  Google Scholar 

  2. P.L. Sachdev, Shock Waves and Explosions (Chapman & Hall/CRC, 2004).

    Google Scholar 

  3. G.I. Taylor, The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. A 201, 175–186 (1950)

    Article  MATH  Google Scholar 

  4. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol 2 (Academic, New York, 1967)

    Google Scholar 

  5. W.D. Hayes, The propagation upward of the shock wave from a strong explosion in the atmosphere. J. Fluid Mech. 32, 317 (1968)

    Article  MATH  Google Scholar 

  6. D.D. Laumbach, R.F. Probestein, A point explosion in an old exponential atmosphere. J. Fluid Mech. 35, 53 (1969)

    Article  Google Scholar 

  7. L. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1969)

    MATH  Google Scholar 

  8. G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  9. S. Matsumora, O. Onodera, and I.L. Takayama, Noise induced by weak shock waves in automobile exhaust systems (Effects of viscosity and back pressure), Proceedings of the 19th Int. Symp. on Shock Waves and Shock Tubes, Marseille, France, Vol. III (1993), pp. 367–372

    Google Scholar 

  10. K.C. Phan, On the performance of blast deflectors and impulse attenuators, Proceedings of the 18th Int. Symp. on Shock Waves and Shock Tubes, Sendai, Japan (1991), pp. 927–934.

    Google Scholar 

  11. K.P. Stanyukovich, Unsteady Motion of Continuous Media, Gastekhizdat, Englo. Transl. (Pergamon Press, New York, 1969)

    Google Scholar 

  12. N.C. Freeman, On the stability of plane shock waves. J. Fluid Mech. 2, 397–411 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  13. K.C. Lapworth, An experimental investigation of the stability of plane shock waves. J. Fluid Mech. 6, 469–480 (1959)

    Article  MATH  Google Scholar 

  14. M.G. Briscoe, A.A. Kovitz, Experimental and theoretical study of the stability of plane shock waves reacted normally from perturbed hat walls. J. Fluid Mech. 31, 529–546 (1968)

    Article  MATH  Google Scholar 

  15. W.K. Van Moorhem, A.R. George, On the stability of plane shocks. J. Fluid Mech. 68, 108 (1975)

    Article  MATH  Google Scholar 

  16. M.I. Lighthill, Proc. R. Soc. A 198, 454 (1949)

    Article  MathSciNet  Google Scholar 

  17. D.S. Butler, Converging Spherical and Cylindrical Shocks, Armament Research Establishment, Report No. 54/54 (1954)

    Google Scholar 

  18. A. Ramu, M.P. Ranga Rao, Converging spherical and cylindrical shock waves. J. Eng. Math. 27, 411–417 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.D. Ramsey, J.R. Kamm, J.H. Bolstad, The guderley problem revised. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)

    Article  MathSciNet  Google Scholar 

  20. W. Chester, The propagation of shock waves in a channel of non-uniform width. Quart J. Mech. Appl. Math. 6(4), 440–452 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.F. Chisnell, The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 4, 286–298 (1958)

    MathSciNet  MATH  Google Scholar 

  22. G.B. Whitham, On the propagation of shock waves through regions of nonuniform area of flow. J. Fluid Mech. 4(1), 337–360 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.B. Whitham, A New approach to problems of shock dynamics. Part 1: Two-dimensional problems. J. Fluid Mech. 2(1), 145–171 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. G.B. Whitham, A New approach to problems of shock dynamics. Part II: Three-dimensional problems. J. Fluid Mech. 5(1), 369–386 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Fong, B. Ahlborn, Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)

    Article  Google Scholar 

  26. J.H. Gardner, D.L. Book, I.B. Bernstein, Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 1(14), 41–58 (1982)

    Article  MATH  Google Scholar 

  27. M. El-Mallah, Experimental and Numerical Study of the Bleed Effect on the Propagation of Strong Plane and Converging Cylindrical Shock Waves, The Department of Mechanical Engineering, Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Concordia University Montreal, Quebec, Canada, May 1997

    Google Scholar 

  28. P.L. Sachdev, Self-Similarity and Beyond, Exact Solutions of Nonlinear Problems (Chapman & Hall/CRC, 2000)

    Google Scholar 

  29. http://www.nuclear-knowledge.com/nuclear_physics.php

  30. B.C. Reed, The physics of the Manhattan project, 3rd edn. (Springer, New York, 2015)

    MATH  Google Scholar 

  31. G. Guderley, Powerful spherical and cylindrical compression shocks in the neighborhood of the center of the sphere and of the cylindrical axis. Luftfahrtforschung 19, 302 (1942)

    MathSciNet  Google Scholar 

  32. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CRT) applications. Nature 239, 139 (1972)

    Article  Google Scholar 

  33. L. Landau, E. Lifshitz, Statistical Physics (Addison-Wesley, Reading, 1969). Chap. 5

    MATH  Google Scholar 

  34. J. Mayer, M. Mayer, Statistical Mechanics, 385 (Wiley, New York, 1940)

    MATH  Google Scholar 

  35. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid, Volume I and II, 1st edn. (Ronald Press Company, New York, 1953)

    Google Scholar 

  36. A. Gsponer, Fourth Generation Nuclear Weapons: Military Effectiveness and Collateral Effects (Independent Scientific Research Institute, Geneva, Switzerland, 2008)

    Google Scholar 

  37. J. Becker, Testing the physics of nuclear isomers, Sci. Technol. Rev. (Lawrence Livermore National Laboratory, 2005) pp. 24–25

    Google Scholar 

  38. G.I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  39. G. Birkhoff, Hydrodynamics (Princeton University Press, Princeton, NJ, 1950). Chap. V

    MATH  Google Scholar 

  40. L. Dresner, Similarity Solutions of Nonlinear Partial Differential Equations (Pitman Advanced Publishing Program, 1983)

    Google Scholar 

  41. K.T. Vu, J. Butcher, J. Carminati, Similarity solutions of partial differential equations using DESOLV. Comput. Phys. Commun. 176(11–12), 682–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Van Dyke, Perturbation Methods in Fluid Mechanics (The Parabolic Press, Stanford, California, 1975)

    MATH  Google Scholar 

  43. G.I. Barenblatt, Y.B. Zel’dovich, Self-Similar Solutions as Intermediate Asymptotics, Institute of Mechanics, Moscow University, Moscow, USSR

    Google Scholar 

  44. G.I. Barenblatt, Scaling, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  45. J. Awrejcewicz and V.A. Krysko, Introduction to Asymptotic Methods (Chapman & Hall/CRC, Taylor & Francis Group, 2006)

    Google Scholar 

  46. J.K. Hunter, Asymptotic Analysis and Singular Perturbation Theory (University of California at Davis, Davis, 2004)

    Google Scholar 

  47. R. Serber, R. Rhodes, The Los Alamos Primer, vol 2 (University of California Press, Berkeley, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2017). Shock Wave and High-Pressure Phenomena. In: Dimensional Analysis Beyond the Pi Theorem. Springer, Cham. https://doi.org/10.1007/978-3-319-45726-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45726-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45725-3

  • Online ISBN: 978-3-319-45726-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics