Principles of the Dimensional Analysis

  • Bahman Zohuri


Nearly all scientists at conjunction with simplifying a differential equation have probably used dimensional analysis. Dimensional analysis (also called the factor-label method or the unit factor method) is an approach to problem that uses the fact that one can multiply any number or expression without changing its value. This is a useful technique. However, the reader should take care to understand that chemistry is not simply a mathematics problem. In every physical problem, the result must match the real world.


  1. 1.
    G.I. Barenblatt, Dimensional Analysis (Gordon and Breach Science, New York, 1987)Google Scholar
  2. 2.
    Galileo Galilei, Discorsi e Dimostrazioni Matematiche intorno à due nuoue scienze Attenenti alla Mecanica & i Movimenti Locali (1638)Google Scholar
  3. 3.
    I. Stewart, Does God Play Dice (Penguin, London, 1989), p. 219zbMATHGoogle Scholar
  4. 4.
    Tina Komulainen, Helsinki University of Technology, Laboratory of Process Control and Automation. tiina.komulainen@hut.fiGoogle Scholar
  5. 5.
    J. Sylvan Katz, The Self-Similar Science System. Research Policy 28, 501–517 (1999)CrossRefGoogle Scholar
  6. 6.
    C. Judd, Fractals ¨C Self-Similarity.¡«ma0cmj/FractalContents.html. Accessed 16 Mar 2003
  7. 7.
    N. Shiode, M. Batty, Power law distributions in real and virtual worlds. Accessed 17 Mar 2003
  8. 8.
    Charles Stuart University. The Hausdorff Dimension Accessed 17 Mar 2003
  9. 9.
    P. Krugman, The Self-Organizing Economy (Blackwell, Oxford, 1996)Google Scholar
  10. 10.
    G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics, 1st edn. (Cambridge University Press, Cambridge, 1994)zbMATHGoogle Scholar
  11. 11.
    O. Petruk, Approximations of the self-similar solution for blast wave in a medium with power-law density variation (Institute for Applied Problems in Mechanics and Mathematics NAS of Ukraine, Lviv, 2000)Google Scholar
  12. 12.
    G.I. Taylor, Proc. R. Soc. London A201, 159 (1950)CrossRefGoogle Scholar
  13. 13.
    L. Sedov, Prikl. Mat. Mekh. 10, 241 (1946)Google Scholar
  14. 14.
    L. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959)zbMATHGoogle Scholar
  15. 15.
    R.K. Merton, The Matthew effect in science. Science 159(3810), 56–63 (1968)CrossRefGoogle Scholar
  16. 16.
    R.K. Merton, The Matthew effect in science II. ISIS 79, 606–623 (1988)CrossRefGoogle Scholar
  17. 17.
    W.B. Krantz, Scaling Analysis in Modeling Transport and Reaction Processes (Wiley Interscience, Hoboken, 1939)Google Scholar
  18. 18.
    I. Proudman, J.R.A. Pearson, J. Fluid Mech 2, 237 (1957)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harald Hance Olsen. Bukingham’s Pi Theorem.
  20. 20.
    G.I. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. Roy Soc. A 201, 159–174 (1950)CrossRefzbMATHGoogle Scholar
  21. 21.
    G.I. Taylor, The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy Soc. A 201, 175–186 (1950)CrossRefzbMATHGoogle Scholar
  22. 22.
    C.L. Dym, Principle of Mathematical Modeling. 2nd edn, (Elsevier, 2004)Google Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Pres, New York, 1959). § 61zbMATHGoogle Scholar
  24. 24.
    R. Illner, C.S. Bohun, S. McCollum, T. Van Roode, Mathematical Modeling, A Case Studies Approach (American Mathematical Society (AMS), 2005)Google Scholar
  25. 25.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena (Dover Publication, New York, 2002)Google Scholar
  26. 26.
    G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt-Forsch 19, 302–312 (1942)MathSciNetzbMATHGoogle Scholar
  27. 27.
    D.S. Butler, Converging spherical and cylindrical shocks. Armament Research Establishment report 54/54 (1954)Google Scholar
  28. 28.
    J.H. Lau, M.M. Kekez, G.D. Laugheed, P. Savic, Spherically Converging Shock Waves in Dense Plasma Research, in Proceeding of 10th International Symposium on Shock Tube and Waves, 1979, p. 386Google Scholar
  29. 29.
    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CRT) applications. Nature 239 (1972)Google Scholar
  30. 30.
    I.I. Glass, D. Sagie, Application of Explosive-Driven Implosions to Fusion. Physics of Fluids 25, 269–270 (1982)CrossRefGoogle Scholar
  31. 31.
    F. Winterberg, The Physical Principles of Thermonuclear Explosive Devices (Fusion Energy Foundation Frontiers of Science Series, New York, 1981)Google Scholar
  32. 32.
    L. Woljer, Supernova Remnants. Ann. Rev. Astr. 10, 129 (1972)CrossRefGoogle Scholar
  33. 33.
    I.I. Glass, S.P. Sharma, Production of Diamonds From Graphite using Explosive-Driven Implosions. AIAA Journal 14(3), 402–404 (1976)CrossRefGoogle Scholar
  34. 34.
    K.P. Stanyukovich, Unsteady Motion of Continuous Media (Academic, New York, 1960)Google Scholar
  35. 35.
    S. Ashraf, Approximate Analytic Solution of Converging Spherical and Cylindrical Shocks with Zero Temperature Gradient in the Rear Flow Field. Z. angew. Math. Phys. 6(6), 614 (1973)zbMATHGoogle Scholar
  36. 36.
    S. Yadegari, Self-similarity.¡«syadegar/MasterThesis/node25.html. Accessed 16 Mar 2003
  37. 37.
    B.J. Carr, A.A. Coley, Self-similarity in general relativity. Accessed 16 Mar 2003
  38. 38.
    V.J. Skoglund, Similitude, Theory and Applications (International Textbook Company, Scranton, 1967)Google Scholar
  39. 39.
    H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill Book Company, New York, 1960)zbMATHGoogle Scholar
  40. 40.
    G.I. Barenblatt, ‘Scaling’ Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2006)Google Scholar
  41. 41.
    A. Sakurai, On the problem of shock wave arriving at the edge of gas. Commun. Pure. Appl. Math 13, 353 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    P.L. Sachdev, S. Ashraf, Strong shock with radiation near the surface of a star. Phys. Fluids 14, 2107 (1971)CrossRefGoogle Scholar
  43. 43.
    J. von Neumann, Blast Waves Los Alamos Science Laboratory Technical Series, vol. 7 (Los Alamos, 1947).Google Scholar
  44. 44.
    L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1969). Chap. IVzbMATHGoogle Scholar
  45. 45.
    E. Waxman, D. Shvarts, Second-type self-similar solutions to the strong explosion problem. Phys. Fluids A 5, 1035 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    P. Best, R. Sari, Second-type self-similar solutions to the ultra-relativistic strong explosion problem. Phys. Fluids 12, 3029 (2000)CrossRefzbMATHGoogle Scholar
  47. 47.
    R.’m. Sari, First and second type self-similar solutions of implosions and explosions containing ultra relativistic shocks. Physics of Fluids 18, 027106 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    R.D. Blandford, C.F. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130 (1976)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Bahman Zohuri
    • 1
  1. 1.Galaxy Advanced Engineering, Inc.San MateoUSA

Personalised recommendations