Differential Network Analysis and Graph Classification: A Glocal Approach



Based on the glocal HIM metric and its induced graph kernel, we propose a novel solution in differential network analysis that integrates network comparison and classification tasks. The HIM distance is defined as the one-parameter family of product metrics linearly combining the normalised Hamming distance H and the normalised Ipsen–Mikhailov spectral distance IM. The combination of the two components within a single metric allows overcoming their drawbacks and obtaining a measure that is simultaneously global and local. Furthermore, plugging the HIM kernel into a Support Vector Machine gives us a classification algorithm based on the HIM distance. First, we outline the theory underlying the metric construction. We introduce two diverse applications of the HIM distance and the HIM kernel to biological datasets. This versatility supports the adoption of the HIM family as a general tool for information extraction, quantifying difference among diverse instances of a complex system. An Open Source implementation of the HIM metrics is provided by the R package nettools and in its web interface ReNette.


Differential network Network distance 


  1. 1.
    Angulo, M., Moreno, J., Barabási, A.L., Liu, Y.Y.: Fundamental limitations of network reconstruction (2015). arXiv:1508.03559Google Scholar
  2. 2.
    Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow, M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of Drosophila melanogaster. Science 297 (5590), 2270–2275. Erratum in Science 298 (5596), 1172 (2002)Google Scholar
  3. 3.
    Barabási, A.L.: The network takeover. Nat. Phys. 8, 14–16 (2012)CrossRefGoogle Scholar
  4. 4.
    Barabási, A.L.: Network science. Philos. Trans. R. Soc. A 371 (1987), 20120375 (2013)CrossRefGoogle Scholar
  5. 5.
    Baralla, A., Mentzen, W., de la Fuente, A.: Inferring gene networks: dream or nightmare? Ann. N. Y. Acad. Sci. 1158, 246–256 (2009)CrossRefGoogle Scholar
  6. 6.
    Barla, A., Jurman, G., Visintainer, R., Squillario, M., Filosi, M., Riccadonna, S., Furlanello, C.: A machine learning pipeline for discriminant pathways identification. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds.) Computational Intelligence Methods for Bioinformatics and Biostatistics. Lecture Notes in Computer Science, vol. 7548, pp. 36–48. Springer, Berlin (2012)CrossRefGoogle Scholar
  7. 7.
    Barla, A., Jurman, G., Visintainer, R., Squillario, M., Filosi, M., Riccadonna, S., Furlanello, C.: A Machine learning pipeline for discriminant pathways identification. In: Kasabov, N. (ed.) Springer Handbook of Bio-/Neuroinformatics, Chap. 53, p. 1200. Springer, Berlin (2013)Google Scholar
  8. 8.
    Berchtold, N., Cribbs, D., Coleman, P., Rogers, J., Head, E., Kim, R., Beach, T., Miller, C., Troncoso, J., Trojanowski, J., Zielke, H., Cotman, C.: Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. U. S. A. 105 (40), 15605–15610 (2008)CrossRefGoogle Scholar
  9. 9.
    Bolla, M.: Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables. Wiley, New York (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)CrossRefGoogle Scholar
  11. 11.
    Chung, F.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Philadelphia (1997)Google Scholar
  12. 12.
    Cootes, A., Muggleton, S., Sternberg, M.: The identification of similarities between biological networks: application to the metabolome and interactome. J. Mol. Biol. 369, 1126–1139 (2007)CrossRefGoogle Scholar
  13. 13.
    Cortes, C., Haffner, P., Mohri, M.: Positive definite rational kernels. In: Learning Theory and Kernel Machines. Proceedings of COLT 2003. Lecture Notes on Computer Science, vol. 2777, pp. 41–56. Springer, Berlin (2003)Google Scholar
  14. 14.
    Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2001)zbMATHGoogle Scholar
  15. 15.
    Csermely, P., Korcsmáros, T., Kiss, H., London, G., Nussinov, R.: Structure and dynamics of biological networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacol. Ther. 138, 333–408 (2013)CrossRefGoogle Scholar
  16. 16.
    de la Fuente, A.: From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 26 (7), 326–333 (2010)CrossRefGoogle Scholar
  17. 17.
    Dehmer, M., Mowshowitz, A.: The discrimination power of structural superindices. PLoS ONE 8 (7), e70551 (2013)CrossRefGoogle Scholar
  18. 18.
    Dougherty, E.: Validation of gene regulatory networks: scientific and inferential. Brief. Bioinform. 12 (3), 245–252 (2010)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Filosi, M., Droghetti, S., Arbitrio, E., Visintainer, R., Riccadonna, S., Jurman, G., Furlanello, C.: ReNette: a web-infrastructure for reproducible network analysis (2014). bioRxiv-doi:10.1101/008433Google Scholar
  20. 20.
    Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G., Furlanello, C.: Stability indicators in network reconstruction. PLoS ONE 9 (2), e89815 (2014)CrossRefGoogle Scholar
  21. 21.
    Furlanello, T., Cristoforetti, M., Furlanello, C., Jurman, G.: Sparse predictive structure of deconvolved functional brain networks. High-Dimensional Statistical Inference in the Brain, NIPS 2013 Workshop (2013). arXiv:1310.6547[q-bio.NC]Google Scholar
  22. 22.
    Gill, R., Datta, S., Datta, S.: A statistical framework for differential network analysis from microarray data. BMC Bioinf. 11 (1), 1–10 (2010)CrossRefGoogle Scholar
  23. 23.
    Ha, M., Baladandayuthapani, V., Do, K.A.: DINGO: differential network analysis in genomics. Bioinformatics 31 (21), 3413–3420 (2015)CrossRefGoogle Scholar
  24. 24.
    Hamming, R.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29 (2), 147–160 (1950)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Ideker, T., Krogan, N.: Differential network biology. Mol. Syst. Biol. 8, 565 (2012)CrossRefGoogle Scholar
  26. 26.
    Ioannidis, J., Allison, D., Ball, C., Coulibaly, I., Cui, X., Culhane, A.C., Falchi, M., Furlanello, C., Game, L., Jurman, G., Mehta, T., Mangion, J., Nitzberg, M., Page, G., Petretto, E., van Noort, V.: Repeatability of published microarray gene expression analyses. Nat. Genet. 41 (2), 499–505 (2009)CrossRefGoogle Scholar
  27. 27.
    Ipsen, M., Mikhailov, A.: Evolutionary reconstruction of networks. Phys. Rev. E 66, 046109 (2002). Erratum in Phys. Rev. E 67, 039901 (2003)Google Scholar
  28. 28.
    Iwayama, K., Hirata, Y., Takahashi, K., Watanabe, K., Aihara, K., Suzuki, H.: Characterizing global evolutions of complex systems via intermediate network representations. Sci. Rep. 2, 423 (2012)CrossRefGoogle Scholar
  29. 29.
    Jurman, G.: Metric projections for dynamic multiplex networks (2016). arXiv:1601.01940Google Scholar
  30. 30.
    Jurman, G., Visintainer, R., Furlanello, C.: An introduction to spectral distances in networks. In: Apolloni, B., Bassis, S. (eds.) Proceedings of WIRN10, Frontiers in Artificial Intelligence and Applications, vol. 226, pp. 227–234. IOS Press, Amsterdam (2011)Google Scholar
  31. 31.
    Jurman, G., Visintainer, R., Riccadonna, S., Filosi, M., Furlanello, C.: The HIM glocal metric and kernel for network comparison and classification (2014). arXiv:1201.2931v3Google Scholar
  32. 32.
    Jurman, G., Visintainer, R., Filosi, M., Riccadonna, S., Furlanello, C.: The HIM glocal metric and kernel for network comparison and classification. In: Proceedings IEEE DSAA’15, vol. 36678, pp. 1–10. IEEE, New York (2015)Google Scholar
  33. 33.
    Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: p-norm multiple kernel learning. J. Mach. Learn. Res. 12, 953–997 (2011)Google Scholar
  34. 34.
    Kolar, M., Song, L., Ahmed, A., Xing, E.: Estimating time-varying networks. Ann. Appl. Stat. 4 (1), 94–123 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Koutra, D., Vogelstein, J., Faloutsos, C.: DELTACON: a principled massive-graph similarity function. In: Proceedings of the 13th SIAM International Conference on Data Mining (SDM), pp. 162–170. SIAM, New York (2013)Google Scholar
  36. 36.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473 (7346), 167–173 (2011)CrossRefGoogle Scholar
  37. 37.
    Mardia, K.: Some properties of classical multidimensional scaling. Commun. Stat. Theory Meth. A7, 1233–1241 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Meyer, P., Alexopoulos, L., Bonk, T., Califano, A., Cho, C., de la Fuente, A., de Graaf, D., Hartemink, A., Hoeng, J., Ivanov, N., Koeppl, H., Linding, R., Marbach, D., Norel, R., Peitsch, M., Rice, J., Royyuru, A., Schacherer, F., Sprengel, J., Stolle, K., Vitkup, D., Stolovitzky, G.: Verification of systems biology research in the age of collaborative competition. Nat. Biotechnol. 29 (9), 811–815 (2011)CrossRefGoogle Scholar
  39. 39.
    Mina, M., Boldrini, R., Citti, A., Romania, P., D’Alicandro, V., De ioris, M., Castellano, A., Furlanello, C., Locatelli, F., Fruci, D.: Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 4 (9), e1019981 (2015)Google Scholar
  40. 40.
    Morris, M., Handcock, M., Hunter, D.: Specification of exponential-family random graph models: terms and computational aspects. J. Stat. Softw. 24 (4), 1–24 (2008)CrossRefGoogle Scholar
  41. 41.
    Pavlopoulos, G., Secrier, M., Moschopoulos, C., Soldatos, T., Kossida, S., Aerts, J., Schneider, R., Bagos, P.: Using graph theory to analyze biological networks. BioData Min. 4 (1), 10 (2011)CrossRefGoogle Scholar
  42. 42.
    Ramasamyi, A., Trabzuni, D., Guelfi, S., Varghese, V., Smith, C., Walker, R., De, T., United Kingdom Brain Expression Consortium (UKBEC), North American Brain Expression Consortium, Coin, L., de Silva, R., Cookson, M., Singleton, A., Hardy, J., Ryten, M., Weale, M.: Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17 (10), 1418–1428 (2014)Google Scholar
  43. 43.
    Ruan, D., Young, A., Montana, G.: Differential analysis of biological networks. BMC Bioinf. 16, 327 (2015)CrossRefGoogle Scholar
  44. 44.
    Schölkopf, B.: Support Vector Learning. Oldenbourg, Munchen (1997)zbMATHGoogle Scholar
  45. 45.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24 (4), 427–433 (2006)CrossRefGoogle Scholar
  46. 46.
    Trabzuni, D., Ramasamy, A., Imran, S., Walker, R., Smith, C., Weale, M., Hardy, J., Ryten, M., North American brain expression consortium. Widespread sex differences in gene expression and splicing in the adult human brain. Nat. Commun. 4, 2771 (2013)Google Scholar
  47. 47.
    Trabzuni, D.: United Kingdom Brain Expression Consortium (UKBEC), Thomson, P.: Analysis of gene expression data using a linear mixed model/finite mixture model approach: application to regional differences in the human brain. Bioinformatics 30 (11), 1555–1561 (2014)Google Scholar
  48. 48.
    Tun, K., Dhar, P., Palumbo, M., Giuliani, A.: Metabolic pathways variability and sequence/networks comparisons. BMC Bioinf. 7 (1), 24 (2006)CrossRefGoogle Scholar
  49. 49.
    Xiao, Y., Dong, H., Wu, W., Xiong, M., Wang, W., Shi, B.: Structure-based graph distance measures of high degree of precision. Pattern Recogn. 41 (12), 3547–3561 (2008)CrossRefzbMATHGoogle Scholar
  50. 50.
    Yang, B., Zhang, J., Yin, Y., Zhang, Y.: Network-based inference framework for identifying cancer genes from gene expression data. BioMed. Res. Int. 2013, 12pp. (2013). Article ID 401649Google Scholar
  51. 51.
    Yoon, B.J., Qian, X., Sahraeian, S.: Comparative analysis of biological networks. IEEE Signal Process. Mag. 29 (1), 22–34 (2012)CrossRefGoogle Scholar
  52. 52.
    Zandoná, A., Chierici, M., Jurman, G., Furlanello, C., Cucchiara, S., Del Chierico, F., Putignani, L.: A metagenomic pipeline integrating predictive profiling methods and complex networks for the analysis of NGS microbiome data. NIPS Workshop - Machine Learning in Computational Biology (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.Centro Ricerca e InnovazioneSan Michele all’AdigeItaly

Personalised recommendations