Skip to main content

Apatites : A Mark of Bioactivity

  • Chapter
  • First Online:
Bioactive Glasses

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 989 Accesses

Abstract

Bioceramics are employed to perform biologically inert roles since 1970, and especially hydroxyapatite has been the most extensively investigated bioceramics due to its excellent interaction with the host tissues. The lattice structure of apatites is quite similar to the bones and therefore regarded as a tool for improving bone regeneration and tissue biocompatibility. This chapter would review the apatites, their nature, composition, and deposition mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Haeri M, Goldberg AJ (2014) Mimicking dentin structure Bio-inspired scaffolds for dental tissue engineering. Mater Today 17:10

    Google Scholar 

  • Nissan BB (2014) Advances in calcium phosphate biomaterials, Springer series in biomaterials science an dengineering

    Google Scholar 

  • He LH (2008) Mechanical behaviour of human enamel and the relationship to its structural and compositional characteristics. University of Sydney, Sydney

    Google Scholar 

  • Hayakawa S, Tsuru K, Iida H, Ohtsuki C, Osaka A (1996) MAS-NMR studies of apatite formation on 50CaO·50SiO2 glass in a simulated body fluid. Phys Chem Glasses 37(5):188–192

    Google Scholar 

  • Gross U, Stunz V (1985) The interface of various glasses and glass ceramic with a bony implantation bed. J Biomed Mater Res 19(3):251–271

    Google Scholar 

  • Vogel W, Hoalnd W (1987) The development of glass ceramics for medical applications. Angew Chem 26:527–544

    Google Scholar 

  • Ebisawa Y, Miyaji F, Kokubo T, Ohura K, Nakamura T (1997) Bioactivity of ferrimagnetic glass-ceramics in the system FeO–Fe2O3–CaO–SiO2. Biomaterials 18(19):1277–1284

    Google Scholar 

  • Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass W45 S5 dissolution. J Biomed Mater Res 55:151–157

    Google Scholar 

  • SpÇŽtaru M, Ţârdei C, NemÅ£anu MR, Bogdan F (2008) Rheology of tricalcium phosphate (β-tcp) suspensions. Rev Roum Chim 53(10):955–959

    Google Scholar 

  • Mandel S, Tas AC (2010) Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C, Mater Sci Eng C 30(2):245–254

    Google Scholar 

  • Tardei C, Grigore F, Pasuk I, Stoleriua S (2006) The study of Mg2 + /Ca2 + substitution of β -tricalciumphosphate. J Optoelectron Adv Mater 8(2):568–571

    Google Scholar 

  • Ryu H-S, Youn H-J, Hong KS, Chang B-S, Lee C-K, Chung S-S (2002) An improvement in sintering property of b-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23:909–914

    Google Scholar 

  • Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620

    Google Scholar 

  • Wang YJ, Lai C, Wei K, Chen X, Ding Y Zhong, Wang L (2006) Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology 17:4405–4412

    Google Scholar 

  • Gross KA, Berndt CC, Herman H (1998) Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res 39

    Google Scholar 

  • Oudadesse H, Dietrich E, Gal YL, Pellen P, Bureau B, Mostafa AA, Cathelineau G (2011) Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomed Mater 6:035006

    Google Scholar 

  • Ragel CV, Vallet-Regi M, Rodriguez-Lorenzo LM (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials 23:1865–1872

    Google Scholar 

  • Kasuga T (2005) Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 1:55–64

    Google Scholar 

  • Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    Google Scholar 

  • Sandeep G, Varma HK, Kumary TV, Suresh Babu S, John A (2006) Characterization of novel bioactive glass coated hydroxyapatite granules in correlation with in vitro and in vivo studies. Biomater Artif Organs 19(2):99–107

    Google Scholar 

  • Ramila A Padilla S, Munoz B, Vallet-Reg M (2002) A new hydroxyapatite/glass biphasic material: in vitro bioactivity. Chem Mater 14:2439–2443

    Google Scholar 

  • Stanic V, Dimitrijevi S, Stankovi JA, Mitric M, Jokic B, Plecas IB, Raicevic S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089

    Google Scholar 

  • Lo S-S, Huang D, Tu CH, Hou C-H, Chen C-C (2009) Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process. J Phys D: Appl Phys 42:095420

    Google Scholar 

  • Doostmohammadi A, Monshi A, Fathi MH, Karbasi S, Braissant O, Daniels AU (2011) Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry. J Mater Sci Mater Med 22:2293–2300

    Google Scholar 

  • Ramay HR, Zhang M (2003) Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24:3293–3302

    Google Scholar 

  • Stanciu GA, Sandulescu I, Savu B, Stanciu SG, Paraskevopoulos KM, Chatzistavrou X, Kontonasaki E, Koidis P (2007) Investigation of the hydroxyapatite growth on bioactive glass surface. J Biomed Pharm Eng 1:34–39

    Google Scholar 

  • Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Karakassides MA, Ferreira JMF (2006) Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials 27:1832–1840

    Google Scholar 

  • Sivakumar M, Panduranga Rao K (2002) Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite–gelatin composite microspheres. Biomaterials 23:3175–3181

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep

    Google Scholar 

  • Vallet-Regí M, Romero AM, Ragel CV, LeGeros RZ (1999) XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res 44:416–421

    Google Scholar 

  • Erol M, Ozyuguran A, Celebican O (2010) Synthesis, characterization, and in vitro bioactivity of sol-gel-derived Zn, Mg, and Zn-Mg co-doped bioactive glasses. Chem Eng Technol 33:1066–1074

    Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J et al (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Google Scholar 

  • Bretcanu O, Chen Q, Misra SK, Boccaccini AR, Verne´ E, Vitale- Brovarone C (2007) Biodegradable polymer coated 45S5 Bioglassderived glass-ceramic scaffolds for bone tissue engineering. Glass Tech Eur J Glass Sci Tech A 48:227–234

    Google Scholar 

  • Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 BioglassVR –derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425

    Google Scholar 

  • Wu SC, Hsu HC, Hsiao SH, Ho WF (2009) Preparation of porous 45S5 BioglassVR-derived glass-ceramic scaffolds by using rice husk as a porogen additive. J Mater Sci Mater Med 20:1229–1236

    Google Scholar 

  • Vitale-Brovarone C, Verne´ E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R (2007) Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater 3:199–208

    Google Scholar 

  • Vitale-Brovarone C, Baino F, Verne´ E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med 20:643–653

    Google Scholar 

  • Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW, Jiang X, Zhang X (2009) Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviours. J Mater Sci Mater Med 20:1237–1243

    Google Scholar 

  • Cannillo V, Sola A (2009) Potassium-based compositions for a bioactive glass. Ceram Int 35:3389–3393

    Google Scholar 

  • Bellucci D, Cannillo V, Ciardelli G, Gentile P, Sola A (2010) Potassium based bioactive glass for bone tissue engineering. Ceram Int 36:2449–2453

    Google Scholar 

  • Bang HG, Kim SJ, Park SY (2008) Biocompatibility and the physical properties of bio-glass ceramics in the Na2O-CaO-SiO2-P2O5 system with CaF2 and MgF2 additives. J Ceram Process Res 9(6):588–590

    Google Scholar 

  • Implants for surgery–hydroxyapatite–Part 1: ceramic hydroxyapatite. BS ISO 13779-1:2000

    Google Scholar 

  • Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1176

    Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227

    Google Scholar 

  • Schneider OD et al (2008) Cotton wool like nanocomposite biomaterials: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells J Biomed Mater Res B: Appl Biomater 84:350–362

    Google Scholar 

  • Gao T, Aro H T, YlaKnen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22:1475–1483

    Google Scholar 

  • Vern´e E, Ferraris S, Vitale-Brovarone C, Spriano S, Bianchi C L, Naldoni A, Morra M, Cassinelli C (2010) Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater 6:229–240

    Google Scholar 

  • Reilly GC, Radin S, Chen AT, Ducheyne P (2007) Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 28:4091–4097

    Google Scholar 

  • Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Hoa SP, Tomsia AP, Marshall SJ, Marshall GW (2009) Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomater 5:3536–3547

    Google Scholar 

  • Valerio P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948

    Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274

    Google Scholar 

  • Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C 32(7):1941–1947

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res Part B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443

  • Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv 6:51046–51056

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2017). Apatites : A Mark of Bioactivity . In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics