Skip to main content

The Potential of Glasses /Ceramics as Bioactive Materials

  • Chapter
  • First Online:
Bioactive Glasses

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1072 Accesses

Abstract

The composition flexibility for polymers provides them with their unique characteristics, but their low mechanical strength cannot withstand the stresses required in many applications. The use of biodegradable polymer scaffolds for the regeneration of bones is limited and challenging. These polymers lack a mechanically biocompatible hydroxyapatite (HAp) inorganic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Hench LL (2006) The story of Bioglass VR. J Mater Sci Mater Med 17:967–978

    Google Scholar 

  • Kaur G (2016) Solid oxide fuel cell components: interfacial compatibility among SOFC components, Springer

    Google Scholar 

  • Chen Q, Liu L, Zhang SM (2010) The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4:34–44

    Google Scholar 

  • Qiang Fu, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res Part A 95:164–171

    Google Scholar 

  • Zhang X, Jia W, Gu Y, Liu X, Wang D, Zhang C et al (2010) Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31:5865–5874

    Google Scholar 

  • Lin Y, Brown RF, Jung SB, Day DE (2014) Angiogenic effects of borate glass microfibers in a rodent model. J Biomed Mater Res Part A 102:4491–4499

    Google Scholar 

  • Brown RF, Jung SB, Day DE (2014) Angiogenic effects of borate glass microfibers in a rodent model. J Biomed Mater Res Part A 102:4491–4499

    Google Scholar 

  • Kim M-C, Hong M-H, Lee B-H, Choi H-J, Ko Y-M Lee Y-K (2015) Ann Biomed Eng 43(12):3004–3014

    Google Scholar 

  • Rahaman et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Google Scholar 

  • Kaur G et al (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol–gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

  • Kaur G et al (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274

    Google Scholar 

  • Davis JT (1963) Rideal EK in interfacial phenomena. Academic Press, New York

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry, Cornel1 University Press. Ithaca, New York, Chapter IX

    Google Scholar 

  • Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Google Scholar 

  • Hench LL, Wilson J (1993) Introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  • West JK, Nikles R, LaTorre G In better ceramics through chemistry III, Brinker CJ, Clark DE (eds)

    Google Scholar 

  • Ulrich DR (1998) Materials research society, vol 121. Pittsburgh, PA, p 219

    Google Scholar 

  • Hulsenberg D, Harnisch A, Bismarck A (2008) Microstructuring of Glasses, Springer

    Google Scholar 

  • Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C 32(7):1941–1947

    Google Scholar 

  • Singh K, Bala I, Kumar V (2009) Structural optical and bioactive properties of calcium borosilicate glasses. Ceram Int 35:3401–3406

    Google Scholar 

  • Regi MV (2001) Ceramics for medical applications. J Chem Soc, Dalton Trans 2:97–108

    Google Scholar 

  • Zarzycki J Special methods of obtaining glasses and amorphous materials laboratory of science of vitreous materials. University of Montpellier, Montpellier, France

    Google Scholar 

  • Pietrokowsky P (1963) Rev Sci Instr 34:445

    Google Scholar 

  • Zarzycki I Naudin F (1967) Phys Chem Glasses 8:11–18

    Google Scholar 

  • Chen HS, Miller CE (1976) Mat Res Bull 11:49–54

    Google Scholar 

  • Topol LE, Hengsteinberg DH, Blander M, Happe RA, Richardson NL, Nelson LS (1973) J Non-Cryst Solids 12:377–390

    Google Scholar 

  • Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE (2007) In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 90:303–306

    Google Scholar 

  • Huang WH, Day DE, Kittiratanapiboon K, Rahaman MN Kinetics and mechanisms of the conversion of silicate (45 S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596

    Google Scholar 

  • Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ (2008) Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 354:1690–1696

    Google Scholar 

  • Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990

    Google Scholar 

  • Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) Crystallisation kinetics AO- Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg). J Mat Sci 35:3089–3096

    Google Scholar 

  • Yang X, Zhang L, Chen X, Sun X, Yang G, Guo X, Yang H, Gao C, Gou Z (2012) Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 358:1171–1179

    Google Scholar 

  • Zhang X, Jia W, Gua Y, Wei X, Liu X, Wang D, Zhang C, Huang W, Rahaman MN, Day DE, Zhou N (2010) Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31:5865–5874

    Google Scholar 

  • Wang XP, Li X, Ito A, Sogo Y (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO(2)-P(2)O(5) (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7:3638–3644

    Google Scholar 

  • Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945

    Google Scholar 

  • Thamaraiselvi TV, Rajeswari S (2004) Biological evaluation of bioceramic materials—a review. Trends Biomater Artif Organs 18:9–17

    Google Scholar 

  • Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW (2009) Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med 20:375–362

    Google Scholar 

  • Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W (2010) Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution. Biomed Mater 5:15005

    Google Scholar 

  • Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW, Jiang X, Zhang X (2009) Bioactive borosilicate glass scaffolds: In vitro degradation and bioactivity behaviours. J Mater Sci Mater Med 20:1237–1243

    Google Scholar 

  • Vitale-Brovarone C, Miola M, Balagna C, Verne E (2008) 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J 137:129–136

    Google Scholar 

  • Marion NW, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ (2005) Borate glass supports the in vitro osteogen differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12:239–246

    Google Scholar 

  • Ning J, Yao A, Wang D, Huang W, Fu H, Liu X, Jiang X, Zhang X (2007) Synthesis and in vitro bioactivity of a borate-based bioglass. Mater Lett 61:5223–5226

    Google Scholar 

  • Rahaman MN, Liang W, Day DE, Marion NW, Reilly GC, Mao JJ (2005) Preparation and bioactive characteristics of porous borate glass substrates. Ceram Eng Sci Proc 26:3–10

    Google Scholar 

  • Marion NW, Liang W, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ (2005) Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12:239–246

    Google Scholar 

  • Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF (2010) Silicate borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95:172–179

    Google Scholar 

  • Abou Neel EA, Ahmed I, Blaker JJ, Bismarck A, Boccaccini AR, Lewis MP, Nazhat SN, Knowles JC (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1:553–563

    Google Scholar 

  • Bunker BC, Arnold GW, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 64:291–316

    Google Scholar 

  • Gao H, Tan T, Wang D (2004) Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Control Rel 96:29–36

    Google Scholar 

  • Abou Neel EA, Ahmed I, Pratten J, Nazhat SN, Knowles JC (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26:2247–2254

    Google Scholar 

  • Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232

    Google Scholar 

  • Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD (2009) Fabrication and biological characteristics of b-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci Mater Med 20:351–358

    Google Scholar 

  • Branda F, Arcobello-Varlese F, Costantini A, Luciani G (2002) Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO.2SiO2 glass. 23:711–716

    Google Scholar 

  • Abou Neel EA, Mizoguchi T, Ito M, Bitar M, Salih V, Knowles JC (2007) In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials 28:2967–2977

    Google Scholar 

  • Vitale-Brovarone C, Verne E, Baino F, Ciapetti G, Leonardi E, Baldini N (2008) Bioresorbable phosphate scaffolds for bone regeneration. Key Eng Mater 361/363:241–244

    Google Scholar 

  • Abou Neel EA, Knowles JC (2008) Physical and biocompatibility studiesof novel titanium dioxide doped phosphate-based glasses forbone tissue engineering applications. J Mater Sci Mater Med 19:377–386

    Google Scholar 

  • Vitale-Brovarone C, Baino F, Bretcanu O, Verne E (2009) Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties. J Mater Sci Mater Med 20:2197–2205

    Google Scholar 

  • Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphatebased glasses. Antimicrob Agents Chemother 51:4453–4461

    Google Scholar 

  • Shah R, Sinanan ACM, Knowles JC, Hunt NP, Lewis MP (2005) Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials 26:1497–1505

    Google Scholar 

  • Abou Neel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interf 6:435–446

    Google Scholar 

  • Navarro M, Del Valle S, Martı´nez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25:4233–4241

    Google Scholar 

  • Singh K, Bahadur D, Characterization of SiO2 ± Na2O ± Fe2O3 ± CaO ± P2O5 ± B2O3 glass ceramics J Mat Sci Mat Med 10:481–484

    Google Scholar 

  • Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M (2009) Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram 108:155–161

    Google Scholar 

  • Luderer AA, Borrelli NF, Panzarina JN, Mansfield GR, Hess DM, Brown JL, Barnett EH, Hawn EW (1983) Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. Radiation Res 94(1):190–198

    Google Scholar 

  • Vitale–Brovarone C, Verne E, Bosetti M, Appendino P, Cannas M (2005) Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mat Sci Mat Med 16:909– 917

    Google Scholar 

  • Fu Q, Saiz E, Tomsia AP (2011) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7:3547–3554

    Google Scholar 

  • Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA (2003) Physico-chemical degradation of soluble phosphate glasses stabilized with TiO2 for medical applications. J Am Ceram Soc 86:1345–1352

    Google Scholar 

  • Navarro M, Clement J, Ginebra MP, Martinez S, Avila G, Planell JA (2002) Improvement of the stability and mechanical properties of resorbable phosphate glasses by the addition of TiO2. Proceedings of the 14th international symposium on ceramics in medicine. Bioceramics 14, 14–17 Palms Springs, USA, 2002, pp. 275–278

    Google Scholar 

  • Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24(10):42–56

    Google Scholar 

  • Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44(2–3):45–89

    Google Scholar 

  • Kawamura Y, Shibata T, Inoue A et al (1997) Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Mater 46(1):253–263

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu7.5 amorphous alloy in phosphate buffered solution. Corros Sci 42(9):1651–1660

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effect of pH on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in a phosphate-buffered solution. Corros Sci 42(9):2193–2200

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros Sci 42(12):2167–2185

    Google Scholar 

  • Hiromoto S, Hanawa T (2002) Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks’ balanced solution. Electrochimica Acta 47(9):1343–1349

    Google Scholar 

  • Morrison ML, Buchanan RA, Peker A (2004) Cyclic-anodicpolarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12(10–11):1177–1181

    Google Scholar 

  • Morrison M L, Buchanan R A, Leon RV (2005) The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J Biomed Mater Res Part A 74(3):430–438

    Google Scholar 

  • Horton JA, Parsell DE (2003) Biomedical potential of a zirconium-based bulk metallic glass. Mater Res Soc Symp Proc 754:CC1.5.1

    Google Scholar 

  • Jin KF, Löffler JF (2005) Bulk metallic glass formation in Zr-Cu-Fe-Al alloys. Appl Phys Lett 86(24):241909

    Google Scholar 

  • Zberg B, Arata ER, Uggowiter PJ (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231

    Google Scholar 

  • Zberg B, Uggowiter PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891

    Google Scholar 

  • Maruyama N, Hiromoto S, Ohnuma M (2005) Fretting fatigue properties of Zr-based bulk amorphous alloy in phosphate buffered saline solution. J Japan Inst Metals 69(6):481–487

    Google Scholar 

  • Liu L, Yu Y, Chan KC (2009) Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification. Intermetallics 18:1978–1982

    Google Scholar 

  • Day RM, Maquet V, Boccaccini AR, Jerome R, Forbes A (2005) In vitro and in vivo analysis of macroporous biodegradable poly(D, L-lactide-co-glycolide) scaffolds containing bioactive glass. J Biomed Mater Res A 75:778–787

    Google Scholar 

  • Seeley Z, Bandyopadhay A, Bose S (2007) Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics. J Biomed Mater Res A 82:113–121

    Google Scholar 

  • Novak S, Druce J, Chen QZ, Boccaccini AR (2009)
TiO2 foams with poly-(D,L-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds.
J Mater Sci 44:1442–1448

    Google Scholar 

  • Jones JR, Ehrenfried LM, Hench LL (2007) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973

    Google Scholar 

  • Hollinger JO, Brekke J, Groskin E, Lee D (1999) Role of bone substitutes. Clin Ortho Rel Res 324:55–65

    Google Scholar 

  • Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze drying processing. J Am Cer Soc 84:230–232

    Google Scholar 

  • Deville S, Saiz E, Tomsia A (2006) Freeze coating of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27:5480–5489

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol–gel or melt quenched bioactive glasses fosr tissue engineering. J Biomed Mater Res Part B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443

  • Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv 6:51046–51056

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol–gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2017). The Potential of Glasses /Ceramics as Bioactive Materials . In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics