Skip to main content

Polymers as Bioactive Materials-I: Natural and Non-degradable Polymers

  • Chapter
  • First Online:
Bioactive Glasses

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1038 Accesses

Abstract

Over the past decade, the use of polymeric materials has increased tremendously. Polymeric materials have found wide applications in bone, vascular, skin, cartilage, and liner regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    Google Scholar 

  • Weiss AS (2011) The science of elastin. Elastagen Pvt. L Ltd

    Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Google Scholar 

  • Naira LS, Cato T (2007) Laurencin, biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Google Scholar 

  • Zhang Q, Lin D, Yao S (2015) Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 132:311–322

    Google Scholar 

  • Sutherland IW (1996) Extracellular polysaccharides, 2nd edn. Biotechnology

    Google Scholar 

  • Nettles DL, Chilkoti A, Setton LA (2010) Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 62:1479–1485

    Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16

    Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56

    Google Scholar 

  • Nagapudi K, Brinkman WT, Thomas BS, Park JO, Srinivasarao M, Wright E, Conticello VP, Chaikof EL (2005) Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials 26:4695–4706

    Google Scholar 

  • Bronzino JD (2006) Biomedical engineering fundamentals, 3rd edn. CRC press

    Google Scholar 

  • Gijpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–104

    Google Scholar 

  • Lee GN, Na J (2013) Future of microbial polyesters. Microb Cell Fact 12:54

    Google Scholar 

  • Kohane DS, Langer R (2008) Polymeric biomaterials in tissue engineering. Pediatr Res 63:487–491

    Google Scholar 

  • Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147–230

    Google Scholar 

  • Buckwalter JA (1983) Articular cartilage. Instr Course Lect 32:349–370

    Google Scholar 

  • Mie M, Mizushima Y, Kobatake E (2008) Novel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J Biomed Mater Res B Appl Biomater 86:283–290

    Google Scholar 

  • Henschen A, Lottspeich F, Kehl M, Southan C (1983) Covalent structure of fibrinogen. Ann NY Acad Sci 408: 28–43

    Google Scholar 

  • Ochubiojo1 EM Starch AR From food to medicine, scientific, health and social aspects of the food industry (Intechophen)

    Google Scholar 

  • Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Google Scholar 

  • Huang S, Cao Z, Davie EW (1993) The role of amino-terminal disulfide bonds in the structure and assembly of human fibrinogen. Biochem Biophys Res Commun 190:488–495

    Google Scholar 

  • Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101:11007–11028

    Google Scholar 

  • Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW (2001) The amino acid sequences in fibrin responsible for high affinity thrombin binding. Thromb Haemost 85:470–474

    Google Scholar 

  • Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid crosslinking of elastin-like polypeptides with hydroxymethylphosphines in aqueous solution. Biomacromolecules 8:1463–1470

    Google Scholar 

  • Srokowski EM, Woodhouse KA (2008) Development and characterisation of novel cross-linked bio-elastomeric materials. J Biomater Sci Polym Ed 19:785–799

    Google Scholar 

  • Ferry JD (1988) Structure and rheology of fibrin networks. In: Kramer O (ed) Biological and synthetic polymer networks, Elsevier Applied Science, Amsterdam, the Netherlands, pp 41–55

    Google Scholar 

  • Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic-engineering of structural protein polymers. Biotechnol Prog 6:198–202

    Google Scholar 

  • Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96:3772–3778

    Google Scholar 

  • Wang Y, Bian Y-Z, Wu Q, Chen G-Q (2008) Evaluation of three dimensional scaffolds prepared from poly(3-hydroxybutyrate-co- 3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–68

    Google Scholar 

  • Mosesson MW (2003) Fibrinogen gamma chain functions. J Thromb Haemost 1:231–238

    Google Scholar 

  • Jordan SW, Haller CA, Sallach RE, Apkarian RP, Hanson SR, Chaikof EL (2007) The effect of a recombinant elastin-mimetic coating of an ePTFE prosthesis on acute thrombogenicity in a baboon arteriovenous shunt. Biomaterials 28:1191–1197

    Google Scholar 

  • Agrawal CM, Athanasiou KA, Heckman JD (1997) Biodegradable PLA/PGA polymers for tissue engineering in orthopaedica. Mater Sci Forum 250:115–128

    Google Scholar 

  • Sanderson JE (1988) Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrolidone. United States Patent 4(722948):1–14

    Google Scholar 

  • Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparison of biodegradable substances as osteogenic agents. Oral Surg 43:836–843

    Google Scholar 

  • Storey RF, Wiggins JS, Mauritz KA, Puckett AD (1993) Bioabsorbable composites. II: Nontoxic, L-lysinebased (polyester-urethane) matrix composites. Polym Compos 14:17

    Google Scholar 

  • Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials 21:2405–2412

    Google Scholar 

  • Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029

    Google Scholar 

  • Atala A, Kim W, Paige KT, Vacanti CA, Retik AB (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 152:641–643

    Google Scholar 

  • Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Google Scholar 

  • Zhao K, Deng Y, Chen CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045

    Google Scholar 

  • Deng Y, Lin X-S, Zheng Z, Deng J-G, Chen J-C, Ma H et al (2003) Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials 24:4273–4281

    Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Google Scholar 

  • Park SJ, Kim TW, Kim MK, Lee SY, Lim S-C (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206

    Google Scholar 

  • Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM et al (2003) Biomimetic surface modification of poly(-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 24:3859–3868

    Google Scholar 

  • Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619

    Google Scholar 

  • Tripathi L, Wu LP, Meng DC, Chen JC, Chen GQ (2013) Biosynthesis and characterization of diblock copolymer of P(3-hydroxypropionate)-block-P (4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules 14:862–870

    Google Scholar 

  • Al-Karawi AJM, Al-Daraji AHR (2010) Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym 79(3):769–774

    Google Scholar 

  • Boesel LF, Mano JF, Reis RL (2004) Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. J Mater Sci Mater Med 15(1):73–83

    Google Scholar 

  • Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chem Biol 8:536–546

    Google Scholar 

  • Lee SY, Mattanovich D, Villaverde A (2012) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156

    Google Scholar 

  • Choi SG, Kerr WL (2003) Water mobility and textural properties of native and hydroxypropylated wheat starch gels. Carbohydr Polym 51(1):1–8

    Google Scholar 

  • Duarte ARC, Mano JF Reis RL (2009) Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids 49(2):279–285

    Google Scholar 

  • Heinze T (2005) Carboxymethyl ethers of cellulose and starch—a review. Chem Plant Raw Mater 3:13–29

    Google Scholar 

  • Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595

    Google Scholar 

  • Deng Y, Zhao K, Zhang X-f, Hu P, Chen G-Q (2002) Study on the threedimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23:4049–4056

    Google Scholar 

  • Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21:1921–1927

    Google Scholar 

  • Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA (1995) Injectable cartilage. Plast Reconst Surg 96:1390–1398

    Google Scholar 

  • Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274

    Google Scholar 

  • Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C 32(7):1941–1947

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443.

  • Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5-SiO2-B2O3 mesoporous glasses. RSC Adv 6:51046–51056

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2017). Polymers as Bioactive Materials-I: Natural and Non-degradable Polymers. In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics