Skip to main content

Bulk Metallic Glasses for Healthcare: State of the Art and Prospects for the Future

  • Chapter
  • First Online:
Bioactive Glasses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The implantation of material inside the human body is based on the material selection and hence can be designed as per the specific requirement. Metallic alloys have found widespread applications in the biomedical engineering and the biocompatibility can be enhanced due to sophistication of metallurgical aspects of fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267. doi:10.1016/j.actamat.2010.11.027

  • Takeuchi A, Inoue A (2005) Metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829. doi:10.2320/matertrans.46.2817

  • Miracle DB (2004) Nature Mater 3:697

    Google Scholar 

  • Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 6(7):2740–2750. doi:10.1016/j.actbio.2016.03.047

  • Liu L, Chan KC, Yu Y, Chen Q (2010) Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification. Intermetallics 18(10):1978–1982. doi:10.1016/j.intermet.2010.02.039

  • Huang L, Pu C, Fisher RK, Mountain DJH, Gao Y, Liaw PK, He W (2015) A Zr-based bulk metallic glass for future stent applications: materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater 25:356–368. doi:10.1016/j.actbio.2015.07.012

  • Liu L, Qiu CL, Huang CY, Yu Y, Huang H, Zhang SM (2009) Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallics 17(4):235–240. doi:10.1016/j.intermet.2008.07.022

  • Qin F, Dan Z, Wang X (2011) Ti-based bulk metallic glasses for biomedical applications, pp 249–268

    Google Scholar 

  • Sugiyama N, Xu H, Onoki T, Hoshikawa Y, Watanabe T, Matsushita N, Yoshimura M (2009) Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique. Acta Biomater 5(4):1367–1373. doi:10.1016/j.actbio.2008.10.014

  • Blanquer A, Hynowska A, Nogués C, Ibáñez E, Sort J, Dolors Baró M, Barrios L (2016) Effect of surface modifications of Ti 40 Zr 10 Cu 38 Pd 12 bulk metallic glass and Ti 6Al4V alloy on human osteoblasts in vitro biocompatibility, pp 1–15. doi:10.1371/journal.pone.0156644

  • Wang YB, Xie XH, Li HF, Wang XL, Zhao MZ, Zhang EW, Qin L (2011) Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater 7(8):3196–3208. doi:10.1016/j.actbio.2011.04.027

  • Wang G, Fan HB, Huang YJ, Shen J, Chen ZH (2014) A new TiCuHfSi bulk metallic glass with potential for biomedical applications. Mater Des 54:251–255. doi:10.1016/j.matdes.2013.08.075

  • Wang YB, Li HF, Zheng YF, Li, M (2012) Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater Sci Eng C 32(3):599–606. doi:10.1016/j.msec.2011.12.018

  • Villars P, Prince A, Okamoto H (1994) Handbook of ternary alloy phase diagrams. Materials park, OH, ASM international

    Google Scholar 

  • Zberg B, Arata ER, Uggowiter PJ (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231

    Google Scholar 

  • Zberg B, Uggowiter PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891

    Google Scholar 

  • Yokoyama Y, Fujita K, Yavari AR et al (2009) Malleable hypoeutectic Zr-Ni-Cu-Al bulk glassy alloys with tensile plastic elongation at room temperature. Philos Mag Lett 89(5):322–334

    Google Scholar 

  • McGregor DB, Baan RA, Partensky C (2000) Evaluation of the carcinogenic risks to humans associated with surgical implants andother foreign bodies—a report of an IARC Monographs Programme Meeting. Eur J Cancer 36(3):307–313

    Google Scholar 

  • Jin KF, Löffler JF (2005) Bulk metallic glass formation in Zr-Cu-Fe-Al alloys. Appl Phys Lett 86(24):241909

    Google Scholar 

  • Liu Y, Wang YM, Pang HF, Zhao Q, Liu L (2013) Acta Biomater 9:7043

    Google Scholar 

  • Lin CH, Huangn CH, Chuang JF, Uuang JC, Jang JSC, Chen CH (2013) Mat Sci Eng 33:4520

    Google Scholar 

  • Hua N, Sluang L, Chen W, He W, Zhang T (2014) Mat-Su Eng C 44:4000

    Google Scholar 

  • Oak JJ, Inoue A (2008) J Non Cryst Solids 354:1828

    Google Scholar 

  • Lin HC, Tasi PH, Ke JH, Li JB, Jang JSC, Huang CH, Haung JC (2014) Intermetallices 55:22

    Google Scholar 

  • Ponnambalam V, Poon SJ, Shiflet GJ, Keppens VM, Tayler R, Petculiscu G (2003) Appl Phy Lett 83:1131–1133

    Google Scholar 

  • Zohdi H, Shativerdi HR, Hadavi SMM (2012) Electrochem Commun 13:840–843

    Google Scholar 

  • Gu XN, Zheng YF, Zhong SP (2010) Biomaterials 1093–1103

    Google Scholar 

  • Yu HJ, Wang JQ, Shi XT, Luzgin L, Wu HK, Perepezko JH (2013) Adv Funct Mater 23:4793–4800

    Google Scholar 

  • Cao JD, Martens P, Laws KJ, Boughton P, Ferry M (2013) J Biomed mater Res B Appl Biomater 101:43–49

    Google Scholar 

  • Jiao W, Li HF, Zhao K, Bai HY, Wang YB, Zheng YF et al (2011) J Non Cryst Solids 357:3830–3840

    Google Scholar 

  • Meagher P, O’Cearbhaill ED, Byrne JH, Browne DJ (2016) Bulk metallic glasses for implantable medical devices and surgical tools. Adv Mater. doi:10.1002/adma.201505347

  • Schroers J, Kumar G, Hodges TM, Chan S, Kyriakides TR (2009) Bulk metallic glasses for biomedical applications. Jom 61(9):21–29. doi:10.1007/s11837-009-0128-1

  • Buzzi S, Jin K, Uggowitzer PJ, Tosatti S, Gerber I, Löffler JF (2006) Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics 14(7):729–734. doi:10.1016/j.intermet.2005.11.003

  • Nowosielski R, Cesarz K, Babilas R (2013) Structure and corrosion properties of Mg70-xZn30Cax(x = 0,4) alloys for biomedical applications. J Achievements Mater Manuf Eng 58(1):7–15

    Google Scholar 

  • Zhu SJ, Liu Q, Qian YF, Sun B, Wang LG, Wu JM, Guan SK (2014) Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application. Front Mater Sci 8(3):256–263. doi:10.1007/s11706-014-0259-3

  • Ali E, Neel A, Mark D, Padinhara S, John R (1990) Phosphate based glasses: a perspective journal

    Google Scholar 

  • Fakult D, Universit T, Doktoringenieur G (1982) Ni-free Ti-based bulk metallic glasses: glass forming ability and mechanical behavior

    Google Scholar 

  • Zeng RC, Qi WC, Song YW, He QK, Cui HZ, Han EH (2014) In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy. Fronti Mater Sci 8(4):343–353. doi:10.1007/s11706-014-0264-6

  • Horton JA, Parsell DE (2002) Biomedical potential of a zirconium-based bulk metallic glass. MRS Proc 754:6–11. doi:10.1557/PROC-754-CC1.5

  • Chen MW (2011) A brief overview of bulk metallic glasses. Npg Asia Mater 3:82–90. doi:10.1038/asiamat.2011.30

  • Li HF, Xie XH, Zhao K, Wang YB, Zheng YF, Wang WH, Qin L (2013) In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater 9(10):8561–8573. doi:10.1016/j.actbio.2013.01.029.

  • Song R, Liu D-B, Liu Y-C, Zheng W-B, Zhao Y, Chen M-F (2014) Effect of corrosion on mechanical behaviors of Mg-Zn-Zr alloy in simulated body fluid. Front Mater Sci 8(3):264–270. doi:10.1007/s11706-014-0258-4

  • Gu XN, Xie XH, Li N, Zheng YF, Qin L (2012) In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8(6):2360–2374. doi:10.1016/j.actbio.2012.02.018

  • Hynowska A, Blanquer A, Pellicer E, Fornell J, Suriñach S, Baró MD, Sort J (2013) Novel Ti-Zr-Hf-Fe nanostructured alloy for biomedical applications. Materials 6(11):4930–4945. doi:10.3390/ma6114930

  • Xie G, Qin F, Zhu S, Inoue A (2012) Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering. Intermetallics 29:99–103. doi:10.1016/j.intermet.2012.05.006

  • Wang HB, Ma LX, Li L, Zhang B (2015) Fabrication of Fe-based bulk metallic glasses from low-purity industrial raw materials. J Alloy Compd 629(1–4). doi:10.1016/j.jallcom.2014.11.228

  • Cao JD, Kirkland NT, Laws KJ, Birbilis N, Ferry M (2012) Ca-Mg-Zn bulk metallic glasses as bioresorbable metals. Acta Biomater 8(6):2375–2383. doi:10.1016/j.actbio.2012.03.009

  • Fornell J, Van Steenberge N, Varea A, Rossinyol E, Pellicer E, Suriñach S, Sort J (2011) Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J Mech Behav Biomed Mater Mater 4(8):1709–1717. doi:10.1016/j.jmbbm.2011.05.028

  • Oak J-J, Louzguine-Luzgin DV, Inoue A (2007) Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior. J Mater Res 22(5):1346–1353. doi:10.1557/jmr.2007.0154

  • Pang S, Liu Y, Li H, Sun L, Li Y, Zhang T (2015) New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications. J Alloy Compd 625:323–327. doi:10.1016/j.jallcom.2014.07.021

  • Zhao K, Li JF, Zhao DQ, Pan MX, Wang WH (2009) Degradable Sr-based bulk metallic glasses. Scripta Mater 61(11):1091–1094. doi:10.1016/j.scriptamat.2009.08.042

  • Li S, Wei Q, Li Q, Jiang B, Chen Y, Sun Y (2015) Development of Fe-based bulk metallic glasses as potential biomaterials. Mater Sci Eng C 52:235–241. doi:10.1016/j.msec.2015.03.041

  • Wang YB, Li HF, Cheng Y, Wei SC, Zheng YF (2009) Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochem Commun 11(11):2187–2190. doi:10.1016/j.elecom.2009.09.027

  • Gu XN, Li SS, Li XM, Fan YB (2014) Magnesium based degradable biomaterials: a review. Front Mater Sci 8(3):200–218. doi:10.1007/s11706-014-0253-9

  • Li HF, Zhao K, Wang YB, Zheng YF, Wang WH (2012) Study on bio-corrosion and cytotoxicity of a Sr-based bulk metallic glass as potential biodegradable metal. J Biomed Mater Res Part B Appl Biomater 100(2):368–377. doi:10.1002/jbm.b.31958

  • Chen Q, Liu L, Zhang S-M (2010) The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 4(1):34–44. doi:10.1007/s11706-010-0004-5

  • Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24(10):42–56

    Google Scholar 

  • Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44(2–3):45–89

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu7.5 amorphous alloy in phosphate buffered solution. Corros Sci 42(9):1651–1660

    Google Scholar 

  • Kawamura Y, Shibata T, Inoue A (1997) Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Mater 46(1):253–263

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effect of pH on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in a phosphate-buffered solution. Corros Sci 42(9):2193–2200

    Google Scholar 

  • Hiromoto S, Tsai AP, Sumita M (2000) Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros Sci 42(12):2167–2185

    Google Scholar 

  • Hiromoto S, Hanawa T (2002) Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks’ balanced solution. Electrochimica Acta 47(9):1343–1349

    Google Scholar 

  • Morrison ML, Buchanan RA, Peker A (2004) Cyclic-anodicpolarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12(10–11):1177–1181

    Google Scholar 

  • Morrison ML, Buchanan RA, Leon RV (2005) The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J Biomed Mater Res Part A 74(3):430–438

    Google Scholar 

  • Maruyama N, Hiromoto S, Ohnuma M (2005) Fretting fatigue properties of Zr-based bulk amorphous alloy in phosphate buffered saline solution. J Japan Inst Metals 69(6):481–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G., Mauro, J. (2017). Bulk Metallic Glasses for Healthcare: State of the Art and Prospects for the Future. In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics