Skip to main content

Soft Adhesive Pads

  • Chapter
  • First Online:
  • 674 Accesses

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

Abstract

Compliant pads based on a specific foam-like or fibrillar internal structure of material are a widespread type of adhesive structures made of cuticle. Such pads usually have a smooth surface at a macroscale and are supplemented by lipid-bearing secretions. Besides, in whip-spiders there is the special case of a soft pad with spatula-like microstructures directly connected with the surface. Soft pads usually occur on the pretarsus as so-called arolia, which serve dynamic attachment during locomotion and static attachment during resting. Arachnids have arolia of different shape, which influences their contact mechanics. There are cushion- or bubble-like pads, disc- or mushroom-like ones, and arolia with a stiff trunk and a broad soft lip (transverse-lip arolium). The latter type has evolved three times independently among arachnids, with a strikingly similar structure. The specific internal structure of soft adhesive pads allows for different detachment mechanisms, like invagination, folding and lateral peeling. In addition to the literature review, this chapter includes the first ultrastructural and functional original data on the arolia of pseudoscorpions, harvestman nymphs, and some mites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akimov IA, Starovir IA, Yastrebtsov AV, Gorgol VG (1988) Varroa mite: the agent of the Bee varroatosis. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Alberti G, Coons L (1999) Acari: mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates: chelicerate Arthropoda, vol 8. Wiley-Liss, New York, pp 515–1265

    Google Scholar 

  • Atyeo WT (1979) Pretarsi of astigmatid mites. Acarologia 20:244–269

    CAS  PubMed  Google Scholar 

  • Baker GT (1997) The pulvillus: Cuticular structure and function (Acarina: Ixodida). 日本ダニ学会誌 6(1):25–31

    Google Scholar 

  • Baker G, Chandrapatya A, Nesbitt H (1987) Morphology of several types of cuticular suckers on mites (Arachnida, Acarina). Spixiana 10:131–137

    Google Scholar 

  • Barnes WJ (2007) Functional morphology and design constraints of smooth adhesive pads. MRS Bull 32(06):479–485

    Article  CAS  Google Scholar 

  • Behan-Pelletier VM, Walter DE (2007) Phylleremus n. gen., from leaves of deciduous trees in eastern Australia (Oribatida: Licneremaeoidea). Zootaxa 1386:1–17

    Google Scholar 

  • Beier M (1932) 5. Ordnung der Arachnida: Pseudoscorpionidea = Afterscorpione. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie: Bd. 3, 2. Hälfte. Chelicerata, vol 3. W. de Gruyter & Co, Berlin, pp 117–192

    Google Scholar 

  • Bennemann M, Backhaus S, Scholz I, Park D, Mayer J, Baumgartner W (2014) Determination of the Young’s modulus of the epicuticle of the smooth adhesive organs of Carausius morosus using tensile testing. J Exp Biol 217(20):3677–3687

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullock JM, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211(20):3333–3343

    Article  PubMed  Google Scholar 

  • Cushing PE, Brookhart JO, Kleebe H-J, Zito G, Payne P (2005) The suctorial organ of the Solifugae (Arachnida, Solifugae). Arthropod Struct Dev 34(4):397–406

    Article  Google Scholar 

  • De Meijere JC (1901) Über das letzte Glied der Beine bei den Arthropoden. Zool Jahrb Anat 14:417–476

    Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192(11):1213–1222

    Article  Google Scholar 

  • Evans GO (1992) Principles of acarology, vol 18. CAB international, Wallingford

    Google Scholar 

  • Evans GO, Till WM (1965) Studies on the British Dermanyssidae (Acari: Mesostigmata). Part I. External morphology. Bull Br Mus(Nat Hist) Zool 13(8):249–294

    Google Scholar 

  • Farfan M, Klompen H (2012) Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern Atlantic region (North America, Europe). Int J Myriapodol 7:69–91

    Article  Google Scholar 

  • Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33(1):67–75

    Article  PubMed  Google Scholar 

  • Gnaspini P (2007) Development. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge

    Google Scholar 

  • Gnaspini P, da Silva MB, Pioker FC (2004) The occurrence of two adult instars among Grassatores (Arachnida: Opiliones) – a new type of life-cycle in arachnids. Invertebr Reprod Dev 45(1):29–39

    Article  Google Scholar 

  • Gorb S (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc B 267(1449):1239–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Gorb SN (2007) Smooth attachment devices in insects: functional morphology and biomechanics. Adv Insect Physiol 34:81–115

    Article  Google Scholar 

  • Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popov VL, Scherge M, Schwarz U, Vötsch W (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr Comp Biol 42(6):1127–1139

    Article  PubMed  Google Scholar 

  • Harvey M (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebr Syst 6(6):1373–1435

    Article  Google Scholar 

  • Harvey MS, Mahnert V (2006) The systematic position of the Amazonian species of Albiorix (Pseudoscorpiones, Ideoroncidae). J Arachnol 34(1):227–230

    Article  Google Scholar 

  • Harvey MS, Šťáhlavský F (2010) A review of the pseudoscorpion genus Oreolpium (Pseudoscorpiones: Garypinidae), with remarks on the composition of the Garypinidae and on pseudoscorpions with bipolar distributions. J Arachnol 38(2):294–308

    Article  Google Scholar 

  • Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203(12):1887–1895

    CAS  PubMed  Google Scholar 

  • Jiménez ML, Platnick NI, Dupérré N (2011) The haplogyne spider genus Nopsides (Araneae, Caponiidae), with notes on Amrishoonops. Am Mus Novit 3708:1–18

    Article  Google Scholar 

  • Juberthie C (1972) Reproduction et developpement d’un opilion Cosmetidae, Cynorta cubana (Banks), de Cuba. Ann Spéléol 27:773–785

    Google Scholar 

  • Judson ML (2012) Reinterpretation of Dracochela deprehendor (Arachnida: Pseudoscorpiones) as a stem‐group pseudoscorpion. Palaeontology 55(2):261–283

    Article  Google Scholar 

  • Karasawa S, Behan-Pelletier V (2007) Description of a sexually dimorphic oribatid mite (Arachnida: Acari: Oribatida) from canopy habitats of the Ryukyu Archipelago, southwestern Japan. Zool Sci 24(10):1051–1058

    Article  PubMed  Google Scholar 

  • Kästner A (1933) 6. Ordnung der Arachnida. Solifugae Sundvall Walzenspinnen. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol 3, vol 2. de Gruyter & Co., Berlin, pp 193–299

    Google Scholar 

  • Kästner A (1941) 2. Ordnung der Arachnida: Pedipalpi Latreille = Geißel-Scorpione. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie: chelicerata, vol 3. Walter de Gruyter & Co., Berlin, pp 1–76

    Google Scholar 

  • Khaustov A, Ermilov S (2011) A new species of the genus Siteroptes (Acari, Heterostigmata, Pygmephoridae) from European Russia. Ent Rev 91(4):528–532

    Article  Google Scholar 

  • Klann AE (2009) Histology and ultrastructure of solifuges. Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations. PhD-thesis, Ernst-Moritz-Arndt-University Greifswald, Greifswald. Published online: https://www.deutsche-digitale-bibliothek.de/binary/ODU3XEEXCIZGVHOOHIRD7XTONYTTEVS7/full/1.pdf

  • Klann A, Gromov A, Cushing P, Peretti A, Alberti G (2008) The anatomy and ultrastructure of the suctorial organ of Solifugae (Arachnida). Arthropod Struct Dev 37(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock

    Google Scholar 

  • Latif AA, Putterill JF, De Klerk DG, Pienaar R, Mans BJ (2012) Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): first description of the male, immature stages and re-description of the female. Plos One 7(7):e41651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Memoirs Ent Soc Can 118(S136):1–517

    Article  Google Scholar 

  • Liu TP, Peng Y-SC (1990) Scanning electron microscopic observation of the pretarsal suckers of the honey-bee ectoparasite, Varroa jacobsoni (Gamasida: Dermanyssina). Exp Appl Acarol 8(1–2):105–114

    Article  Google Scholar 

  • Meyer MKPS, Ueckermann EA (1987) A taxonomic study of some Anystidae (Acari: Prostigmata). Entomol Mem Dep Agric Wat Supply Repub S Afr 68:1–37

    Google Scholar 

  • Millot J, Vachon M (1949) Ordre de Scorpions. In: Grassé P-P (ed) Traité de Zoologie. Tome VI. Masson et Cie, Paris, pp 386–436

    Google Scholar 

  • OConnor B (1982) Evolutionary ecology of astigmatid mites. Annu Rev Entomol 27(1):385–409

    Article  Google Scholar 

  • Peattie AM, Dirks J-H, Henriques S, Federle W (2011) Arachnids secrete a fluid over their adhesive pads. Plos One 6(5):e20485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez Goodwyn PJ, Peressadko A, Schwarz H, Kastner V, Gorb SN (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J Comp Physiol A 192:1233–1243

    Article  Google Scholar 

  • Quintero D (1975) Scanning electron microscope observations on the tarsi of the legs of Amblypygids (Arachnida Amblypygi). In: Proceedings of the 6th International Arachnological Congress, pp 161–163

    Google Scholar 

  • Ramirez WB, Malavasi JG (1991) Conformation of the ambulacrum of Varroa jacobsoni Oudemans (Mesostigmata: Varroidae): a grasping structure. Int J Acarol 17(3):169–173

    Article  Google Scholar 

  • Roewer CF (1935) Opiliones (Fünfte série). Zugleich eine Revision aller bisher bekannten europäischen Laniatores. Bioespeleologica LXII Archives de Zoologie Experimental et Géneral 78(1):1–96

    Google Scholar 

  • Schargott M, Popov VL, Gorb SN (2006) Spring model of biological attachment pads. J Theor Biol 243:48–53

    Article  CAS  PubMed  Google Scholar 

  • Seeman OD, Alberti G (2015) A new species of Scissuralaelaps (Acari: Mesostigmata: Laelapidae) from millipedes in the Philippines. Syst Appl Acarol 20(6):707–720

    Article  Google Scholar 

  • Sharma PP, Giribet G (2011) The evolutionary and biogeographic history of the armoured harvestmen–Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr Syst 25(2):106–142

    Article  Google Scholar 

  • Townsend VR, Rana NJ, Proud DN, Moore MK, Rock P, Felgenhauer BE (2009) Morphological changes during postembryonic development in two species of Neotropical harvestmen (Opiliones, Laniatores, Cranaidae). J Morphol 270(9):1055–1068

    Article  PubMed  Google Scholar 

  • van der Hammen L (1966) Studies on Opilioacarida (Arachnida) I. Description of Opilioacarus texanus (Chamberlin & Mulaik) and revised classification of the genera. Zoologische Verhandelingen 86(1):1–80

    Google Scholar 

  • van der Hammen L (1983a) New notes on Holothyrida (Anactinotrichid mites). Zoologische Verhandelingen 207:1–48

    Google Scholar 

  • van der Hammen L (1983b) Notes on the comparative morphology of ticks (Anactinotrichida: Ixodida). Zoologische Mededelingen 57:209–242

    Google Scholar 

  • Walter DE, Behan-Pelletier VM (1993) Systematics and ecology of Adhaesozetes polyphyllos sp. nov. (Acari: Oribatida: Licneremaeoidea), a leaf-inhabiting mite from Australian rainforests. Can J Zool 71(5):1024–1040

    Article  Google Scholar 

  • Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, Stenstrup, 163 pp

    Google Scholar 

  • Willemart RH, Santer RD, Spence AJ, Hebets EA (2011) A sticky situation: solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture. J Ethol 29(1):177–180

    Article  Google Scholar 

  • Wolff J, Huber S, Gorb S (2015a) How to stay on mummy’s back: morphological and functional changes of the pretarsus in arachnid postembryonic stages. Arthropod Struct Dev 44:301–312

    Article  PubMed  Google Scholar 

  • Wolff JO, Seiter M, Gorb SN (2015b) Functional anatomy of the pretarsus in whip spiders (Arachnida, Amblypygi). Arthropod Struct Dev 44(6):524–540

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

7.1 Electronic Supplementary Material

Video 7.1

Nymph of the scorpion Liocheles australasiae (Hemiscorpiidae) walking upside down on a glass coverslip. Playback with real speed (AVI 1353 kb)

Video 7.2

Detail of a leg tip (lateral view) of a L. australasiae nymph walking on a glass coverslip, showing the detachment of the arolium by invagination. Recorded with 50 fps and playback with 30 fps (AVI 1902 kb)

Video 7.3

Detail of a leg tip (lateral view) of a L. australasiae nymph walking on a glass coverslip, showing the detachment of the arolium by invagination. Recorded with 50 fps and playback with 15 fps (M2V 8573 kb)

Video 7.4

Detail of a leg tip (view from below) of a L. australasiae nymph walking on a glass coverslip, showing the detachment of the arolium by invagination. Recorded with 500 fps and playback with 30 fps (AVI 834 kb)

Video 7.5

Detail of two leg tips (view from below) of a L. australasiae nymph walking on a glass coverslip, showing the detachment of the arolium by invagination (transmission illumination and DIC optic). Note internal features like the retractor tendon and hemolymph cells. Recorded with 500 fps and playback with 30 fps (AVI 13655 kb)

Video 7.6

RICM-HSV of the arolium of a L. australasiae nymph, showing dry mode of adhesion (no traces left behind after detachment). Recorded with 1000 fps and playback with 30 fps (AVI 29525 kb)

Video 7.7

RICM-HSV of the arolium of a L. australasiae nymph, showing wet mode of adhesion (droplets of a fluid secretion left behind after detachment). Note that the secretion keeps on shrinking to droplets on the hydrophilic glass, indicating their lipid-like nature. Also note the dirt particle, which does not stick to the arolium after detachment, but remains on the glass slide. Hence, the high amount of fluids observed here, may be part of a rinsing mechanism of the arolium. Recorded with 1000 fps and playback with 30 fps (AVI 32975 kb)

Video 7.8

Tick walking upside down on a glass slide. The tick was trapped between a common microscopy slide and the table to reduce its mobility. Nonetheless it was capable to push itself out of the glass slide, showing an enormous strength of the animal and high friction of its arolia. Note the inflation and folding of the arolia during attachment and detachment. Playback with real speed (AVI 803 kb)

Video 7.9

Detail of a leg tip (view from above) of the whip-spider Charon cf. grayi (Charontidae) walking on a glass slide, showing the detachment of the arolium and movement of claws. Note the footprint left behind, indicating the deposition of fluid secretions. Recorded with 500 fps and playback with 30 fps (AVI 3463 kb)

Video 7.10

Detail of a leg tip (frontal view) of the whip-spider Charon cf. grayi (Charontidae) walking on a glass slide, showing the detachment of the arolium. Recorded with 3000 fps and playback with 30 fps (M2V 13515 kb)

Video 7.11

RICM-HSV of an arolium of the whip-spider Charinus cubensis (Charinidae), showing the contact behavior during detachment (dry mode of adhesion). Note that single spatulae jump independently out of contact, thus there is an uneven peel-off (stepwise crack propagation). Recorded with 6250 fps and playback with 15 fps (AVI 10102 kb)

Video 7.12

RICM-HSV of an arolium of the whip-spider C. cf. grayi, showing the contact behavior during detachment (wet mode of adhesion). Recorded with 3000 fps and playback with 15 fps (AVI 5697 kb)

Video 7.13

RICM-HSV of an arolium of the whip-spider C. cf. grayi, showing the contact behavior during detachment (partially wet mode of adhesion). Note that secretions occur only in single areas and do not spread over the pad. Recorded with 8000 fps and playback with 15 fps (AVI 10710 kb)

Video 7.14

RICM-HSV of an arolium of the whip-spider Sarax brachydactylus (Charinidae), showing the contact behavior during detachment (partially wet mode of adhesion). Note that a part of the secretions appears highly viscous, keeping the imprints of spatulae. Recorded with 8000 fps and playback with 25 fps (AVI 28453 kb)

Video 7.15

RICM-HSV of an arolium of the pseudoscorpion Chthonius sp. (Chthoniidae), showing detachment. Note the bi-lateral peel-off. Recorded with 5000 fps and playback with 30 fps (AVI 3525 kb)

Video 7.16

RICM-HSV of an arolium of the pseudoscorpion Neobisium sp. (Neobisidae), showing detachment. Note the bi-lateral peel-off. Recorded with 500 fps and playback with 30 fps (AVI 5441 kb)

Video 7.17

RICM-HSV of an arolium of the pseudoscorpion Neobisium sp., showing sliding of the arolium along the glass surface. Note that lipidoid fluids are deposited by the pointed tarsal setae. Recorded with 500 fps and playback with 30 fps (AVI 33222 kb)

Video 7.18

Tip of the walking leg of the predatory mite Anystis sp. (Anystidae), showing movements of the pretarsus. The foot exhibits both a pair of tenent setae and an arolium, and the high flexibility of the distal tarsus permits a stepwise contact of setae, arolium and claws. Recorded with 1000 fps and playback with 30 fps (AVI 35145 kb)

Video 7.19

RICM-HSV of the foot of Anystis sp. showing stepwise detachment of arolium and setae. Note the fluids left behind both by arolium and tenent setae. Recorded with 5400 fps and playback with 15 fps (AVI 3878 kb)

Video 7.20

RICM-HSV of the arolium of Anystis sp. showing its detachment. Note the bi-lateral peel-off and the lack of fluid remains. Recorded with 30000 fps and playback with 15 fps (AVI 406 kb)

Video 7.21

RICM-HSV of the foot of Anystis sp. showing detachment and attachment. Note that in this case only the tenent setae are brought in contact. Recorded with 500 fps and playback with 30 fps (AVI 10232 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Soft Adhesive Pads. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_7

Download citation

Publish with us

Policies and ethics