Skip to main content

Tape- and Spatula-Shaped Microstructures

  • Chapter
  • First Online:
Book cover Attachment Structures and Adhesive Secretions in Arachnids

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

Abstract

Spatula-like microstructures recruit adhesive forces by generating a close contact with the substrate due to elastic deformation. They usually occur at the tip of bendable hair-like structures, such as setae or microtrichia, whose shafts additionally contribute to the overall conformability of the attachment device. Such spatulate hairs have analogously evolved in the feet of different animal groups and are efficient means of dynamic attachment. The adhesive setae of geckoes are the best-known example of a dry adhesive, based on this principle, but very similarly sized and shaped structures are also present in many hunting spiders and various mites of the order Trombidiformes. Fluid supplemented setae with single, broad spatulae, as known from beetles and flies, are analogously present in some harvestmen of the order Laniatores and in hooded tickspiders (Ricinulei). A unique type of an adhesive pad with micro-spatulae as direct outgrowths of the epicuticle instead of the flattened tips of hairs is represented by the arolium of whip-spiders of the families Charinidae and Charontidae. These pads show contact mechanics and a dry adhesive mechanism comparable to that of the hairy adhesive pads of spiders, and are thus not comparable with other arolia having smooth surfaces. A special type of tape-like adhesive structure is the dragline silk of the brown recluse spider (Loxosceles spp.), which is tacky due to its thin, flattened shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti G, Coons L (1999) Acari: Mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates: Chelicerate Arthropoda, vol 8. Wiley-Liss, New York, pp 515–1265

    Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100(19):10603–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579

    Article  CAS  PubMed  Google Scholar 

  • Blackledge TA, Hayashi CY (2006) Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 209(13):2452–2461. doi: 10.1242/Jeb.02275

    Article  PubMed  Google Scholar 

  • Chung JY, Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J R Soc Interface 2(2):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunlop JA (1994) Movements of scopulate claw tufts at the tarsus tip of a tarantula spider. Neth J Zool 45(3):513–520

    Article  Google Scholar 

  • Eggs B, Wolff JO, Kuhn-Nentwig L, Gorb SN, Nentwig W (2015) Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121(12):1166–1177

    Article  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209(14):2611–2621

    Article  PubMed  Google Scholar 

  • Filippov A, Popov VL, Gorb SN (2011) Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J Theor Biol 276(1):126–131

    Article  PubMed  Google Scholar 

  • Foelix RF, Chu-Wang I-W (1975) The structure of scopula hairs in spiders. In: Proceedings of the 6th international arachnological Congress. Amsterdam, Nederlandse Entomologische Vereniging, pp 156–157

    Google Scholar 

  • Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the salticid Portia. Rev Arachnol 5:329–334

    Google Scholar 

  • Gasparetto A, Seidl T, Vidoni R (2009) A mechanical model for the adhesion of spiders to nominally flat surfaces. J Bionic Eng 6(2):135–142

    Article  Google Scholar 

  • Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc B 265(1398):747–752

    Article  PubMed Central  Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Springer Science & Business Media, Dordrecht/Boston/London, 305pp

    Google Scholar 

  • Gorb S, Beutel R (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88(12):530–534

    Article  CAS  PubMed  Google Scholar 

  • Haas F, Gorb S (2004) Evolution of locomotory attachment pads in the Dermaptera (Insecta). Arthropod Struct Dev 33(1):45–66

    Article  PubMed  Google Scholar 

  • Hill DE (1977) The pretarsus of salticid spiders. Zool J Linn Soc Lond 60(4):319–338

    Article  Google Scholar 

  • Hill DE (2006) Jumping spider feet (Araneae, Salticidae). Peckhamia Epublications 3:1–41

    Google Scholar 

  • Homann H (1957) Haften Spinnen an Einer Wasserhaut. Naturwissenschaften 44(11):318–319

    Article  Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42(6):1140–1145

    Article  PubMed  Google Scholar 

  • Kendall K (1975) Thin-film peeling – elastic term. J Phys D Appl Phys 8(13):1449–1452

    Article  Google Scholar 

  • Kesel A, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206(16):2733–2738

    Article  CAS  PubMed  Google Scholar 

  • Knight DP, Vollrath F (2002) Spinning an elastic ribbon of spider silk. Phil Trans R Soc B 357(1418):219–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, 816pp

    Google Scholar 

  • Labonte D, Clemente CJ, Dittrich A, Kuo C-Y, Crosby AJ, Irschick DJ, Federle W (2016) Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc Natl Acad Sci 113(5):1297–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani K, Egashira K, Toukai T, Ogushi J (2006) Adhesive force of a spider mite, Tetranychus urticae, to a flat smooth surface. JSME Int J Ser C 49(2):539–544

    Article  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192(11):1223–1232

    Article  Google Scholar 

  • Niederegger S, Gorb S, Jiao Y (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187(12):961–970

    Article  Google Scholar 

  • Peattie A, Full R (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci 104(47):18595–18600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peattie AM, Dirks J-H, Henriques S, Federle W (2011) Arachnids secrete a fluid over their adhesive pads. Plos One 6(5):e20485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekár S, Šobotník J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98(7):593–603

    Article  PubMed  Google Scholar 

  • Perafán C, Pérez-Miles F (2010) An unusual setule on type IV urticating setae of Homoeomma uruguayense (Araneae: Theraphosidae). J Arachnol 38(1):153–154

    Article  Google Scholar 

  • Peressadko A, Gorb SN (2004) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80(4):247–261

    Article  CAS  Google Scholar 

  • Pérez-Miles F, Perafán C, Santamaría L (2015) Tarantulas (Araneae: Theraphosidae) use different adhesive pads complementarily during climbing on smooth surfaces: experimental approach in eight arboreal and burrower species. Biology Open: bio.013144

    Google Scholar 

  • Pinto-da-Rocha R, Machado G, Giribet G (2007) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, p 608

    Google Scholar 

  • Qian J, Gao H (2006) Scaling effects of wet adhesion in biological attachment systems. Acta Biomat 2(1):51–58

    Article  Google Scholar 

  • Rambla M (1990) Les scopula des Opilions, differences avec les scopula des Araignées (Arachnida, Opiliones, Araneae). Bull Soc Europ Arachnol 1:293–298

    Google Scholar 

  • Ramírez MJ (2014) The morphology and phylogeny of dionychan spiders (Araneae, Araneomorphae). Bull Amer Mus Nat Hist 390:1–374

    Article  Google Scholar 

  • Roewer CF (1923) Die Weberknechte der Erde. Gustav Fischer, Jena, p 1116

    Google Scholar 

  • Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108

    Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Spolenak R, Gorb S, Arzt E (2005) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1(1):5–13

    Article  PubMed  Google Scholar 

  • Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. Plos One 2(10):e998

    Article  PubMed  PubMed Central  Google Scholar 

  • Talarico G, Palacios-Vargas JG, Fuentes Silva M, Alberti G (2006) Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). J Morphol 267(4):441–463

    Article  PubMed  Google Scholar 

  • Teruel R, Schramm FD (2014) Description of the adult male of Pseudocellus pachysoma Teruel & Armas 2008 (Ricinulei: Ricinoididae). Rev Ibér Aracnología 24:75–79

    Google Scholar 

  • Ubick D, Vetter RS (2005) A new species of Apostenus from California, with notes on the genus (Araneae, Liocranidae). J Arachnol 33(1):63–75

    Article  Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6(14):3269–3272

    Article  CAS  Google Scholar 

  • Voigt D (2016) In situ visualization of spider mite–plant interfaces. J Acarol Soc Jpn 25(S1):119–132

    Article  Google Scholar 

  • Weirauch C (2007) Hairy attachment structures in Reduviidae (Cimicomorpha, Heteroptera), with observations on the fossula spongiosa in some other Cimicomorpha. Zool Anz 246(3):155–175

    Article  Google Scholar 

  • Wohlfart E, Wolff JO, Arzt E, Gorb SN (2014) The whole is more than the sum of all its parts: collective effect of spider attachment organs. J Exp Biol 217(2):222–224

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012a) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41(5):419–433

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012b) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc B 279(1726):139–143

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012c) Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). J Exp Biol 215(1):179–184

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Sci Rep 3:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Gorb SN (2014) Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders. Zoology 118:1–7

    Article  PubMed  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. Plos One 8(5):e62682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Schneider JM, Gorb SN (2014) How to pass the gap – Functional morphology and biomechanics of spider bridging threads. In: Asakura T, Miller T (eds) Biotechnology of silk, vol 5. Springer, Dordrecht, pp 165–177

    Chapter  Google Scholar 

  • Wolff JO, Seiter M, Gorb SN (2015) Functional anatomy of the pretarsus in whip spiders (Arachnida, Amblypygi). Arthropod Struct Dev 44(6):524–540

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

3.1 Electronic Supplementary Material

Video 3.1

Transmission light HSV of the foot of a Zoropsis spinimana (Zoropsidae), showing the spreading of the claw tuft. Recorded with 500 fps and playback with 25 fps (AVI 2091 kb)

Video 3.2

RICM-HSV of the claw tuft of a Zoropsis spinimana (Zoropsidae), showing the detachment of tenent microtrichia. In this species the claw tuft setae are not broadened. The setae in the right that stay in contact after claw tuft detachment are the frictional setae of the distal tarsus. Note minute traces left behind by the detaching tenent setae, which might be remains of a fluid secretion present on the spatulae. Recorded with 500 fps and playback with 15 fps (AVI 20809 kb)

Video 3.3

RICM-HSV of claw tuft setae of the ghost spider Anyphaena accentuata (Anyphaenidae), showing attachment and detachment of tenent microtrichia. This species exhibits very broad claw tuft setae. Recorded with 500 fps and playback with 15 fps (AVI 6567 kb)

Video 3.4

RICM-HSV of a claw tuft seta of the ghost spider Anyphaena accentuata (Anyphaenidae), showing detachment of tenent microtrichia. Recorded with 500 fps and playback with 15 fps (AVI 2259 kb)

Video 3.5

RICM-HSV of the claw tuft of an unidentified Palpimanidae from South-Africa, showing dry mode of adhesion (no traces of tenent setae left behind). Recorded with 500 fps and playback with 15 fps (AVI 9049 kb)

Video 3.6

RICM-HSV of the claw tuft of an unidentified Palpimanidae from South-Africa, showing wet mode of adhesion (fluid coating of claw tuft setae leaving droplets behind after detachment). Recorded with 500 fps and playback with 15 fps (AVI 2012 kb)

Video 3.7

RICM-HSV of the claw tuft of an unidentified Palpimanidae from South-Africa, showing semi-wet mode of adhesion (left claw tuft setae dry, and right claw tuft setae wet). Recorded with 500 fps and playback with 15 fps (AVI 1895 kb)

Video 3.8

RICM-HSV of claw tuft setae of an ablated leg of a Cupiennius salei spider (Ctenidae). In this experiment the contacting glass slide is sheared against the setae (proximal direction), causing a detachment of spatulae (AVI 3065 kb)

Video 3.9

RICM-HSV of a foot of the snout mite Cyta sp. (Bdellidae), showing attachment and detachment of the tenent empodium. Recorded with 1000 fps and playback with 15 fps (AVI 2209 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Tape- and Spatula-Shaped Microstructures. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_3

Download citation

Publish with us

Policies and ethics