Skip to main content

Silica and Alumina Nanophases: Natural Processes and Industrial Applications

Abstract

Silica (SiO2) and alumina (Al2O3) nanophases control several important global element cycles. They play a crucial role in rock weathering and thus affect and are affected by Earth’s response to global climate change. The phases that form through various precipitation and crystallisation reactions, often adjacent to each other, are also important in a plethora of industrial applications. During the formation of both silica and alumina phases, multiple reaction stages controlled by changes in physicochemical parameters govern solid-liquid interface reactions and phase inter-transformations; these stages invariably include hydrolysis and condensation reactions, followed by nucleation and growth of poorly ordered solid nanoparticles, which ultimately dehydrate and crystallise to various polymorphs that in turn can inter-transform through subsequent reactions. In this chapter, we summarise the state of knowledge on reactions that lead to the formation and transformations of silica and alumina colloids in view of experimental evidence in pure and amended systems, compare these with field observations and contrast and compare these with principal processes relevant in industrial applications.

Keywords

  • Silica
  • Alumina
  • Hydrolysis and condensation reaction
  • Nanoparticle nucleation and growth

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ab Rahman I, Padavettan V (2012) Synthesis of silica nanoparticles by Sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:1687–4110

    CrossRef  Google Scholar 

  • Akitt JW (1989) Multinuclear studies of aluminium compounds. Prog Nucl Magn Reson Spectrosc 21(1–2):1–149

    CrossRef  Google Scholar 

  • Akitt JW, Gessner W (1984) Aluminium-27 nuclear magnetic resonance investigations of highly alkaline aluminate solutions. J Chem Soc Dalton Trans 1984:147–148

    CrossRef  Google Scholar 

  • Akitt JW, Gessner W, Weinberger M (1988) High-field aluminium-27 nuclear magnetic resonance investigations of sodium aluminate solutions. Magn Reson Chem 25(12):1047–1050

    CrossRef  Google Scholar 

  • Alexander GB (1954) The polymerisation of monosilicic acid. J Am Chem Soc 76(8):2094–2096

    CrossRef  Google Scholar 

  • Allouche L, Gérardin C, Loiseau T, Férey G, Taulelle F (2000) Al30: a giant aluminum polycation. Angew Chem Int Ed 39(3):511–514

    CrossRef  Google Scholar 

  • Bagwe RP, Hilliard LR, Tan WH (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362

    CrossRef  Google Scholar 

  • Bale HD, Schmidt PW (1959) Small angle X-ray scattering from aluminium hydroxide gels. II. J Chem Phys 31(6):1612–1618

    CrossRef  Google Scholar 

  • Barcza L, Pálfalvi-Rózsahegyi M (1989) The aluminate lye as a system of equilibria. Mater Chem Phys 21(4):345–356

    CrossRef  Google Scholar 

  • Barisik M, Atalay S, Beskok A, Qian S (2014) Size dependent surface charge properties of silica nanoparticles. J Phys Chem C 118(4):1836–1842

    CrossRef  Google Scholar 

  • Belton DJ, Deschaume O, Perry CC (2012) An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J 279(10):1710–20

    CrossRef  Google Scholar 

  • Benning LG, Phoenix V, Mountain BW (2005) Biosilicification: the role of cyanobacteria in silica sinter deposition. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Micro-organisms and earth systems: advances in geomicrobiology, SGM Symposium. Cambridge University Press, Cambridge, pp 131–150

    CrossRef  Google Scholar 

  • Besselink R, Stawski TM, Castricum HL, ten Elshof JE (2013) Evolution of microstructure in mixed niobia-hybrid silica thin films from sol-gel precursors. J Colloid Interface Sci 404:24–35

    CrossRef  Google Scholar 

  • Bi S, Wang C, Cao Q, Zhang C (2004) Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: Correlations between the “Core-links” model and “Cage-like” Keggin-Al 13 model. Coord Chem Rev 248:441–455

    CrossRef  Google Scholar 

  • Bogush GH, Zukoski CF (1991) Uniform silica particle-precipitation – an aggregation growth model. J Colloid Interface Sci 142(1):19–34

    CrossRef  Google Scholar 

  • Bottero JY, Tchoubar D, Cases JM, Fiessinger F (1982) Investigation of the hydrolysis of aqueous solutions of aluminum chloride. 2. Nature and structure by small-angle x-ray scattering. J Phys Chem 86(18):3667–3673

    CrossRef  Google Scholar 

  • Bottero JY, Axelos M, Tchoubar D, Cases JM, Fripiat JJ, Fiessinger F (1987) Mechanism of formation of aluminium trihydroxide from Keggin Al13 polymers. J Colloid Interface Sci 117(1):47–57

    CrossRef  Google Scholar 

  • Boukari H, Long GG, Harris MT (2000) Polydispersity during the formation and growth of the Stober silica particles from small-angle X-ray scattering measurements. J Colloid Interface Sci 229(1):129–139

    CrossRef  Google Scholar 

  • Bradley SM, Hanna JV (1994) 27Al and 23Na MAS NMR and powder X-ray diffraction studies of sodium aluminate speciation and the mechanistics of aluminium hydroxide precipitation upon acid hydrolysis. J Am Chem Soc 116:7771–7783

    CrossRef  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, London

    Google Scholar 

  • Brosset C, Biedermann G, Gunnar SL (1954) Studies on the hydrolysis of metal ions. XI. The aluminium ion, Al3+. Acta Chem Scand 8:1917–1926

    CrossRef  Google Scholar 

  • Busing WR, Levy HA (1958) A single crystal neutron diffraction study of diaspore, AlO(OH). Acta Crystallogr 11:798–803

    CrossRef  Google Scholar 

  • Buvári-Barcza Á, Rózsahegyi M, Barcza L (1998) Hydrogen bonded associates in the Bayer process (in concentrated aluminate lyes): the mechanism of gibbsite nucleation. J Mater Chem 8:451–455

    CrossRef  Google Scholar 

  • Caho GY, Baker J, Sabina AP, Roberts AC (1985) Doyleite, a new polymorph of Al(OH)3, and its relationship to bayerite, gibbsite and nordstrandite. Can Mineral 23:21–28

    Google Scholar 

  • Carcouet CCMC, van de Put MWP, Mezari B, Magusin PCMM, Laven J, Bomans PHH et al (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14(3):1433–1438

    CrossRef  Google Scholar 

  • Carroll S, Mroczek E, Alai M, Ebert M (1998) Amorphous silica precipitation (60 to 120 degrees C): comparison of laboratory and field rates. Geochim Cosmochim Acta 62(8):1379–1396

    CrossRef  Google Scholar 

  • Casey WH (2006) Large aqueous aluminium hydroxide molecules. Chem Rev 106(1):1–16

    CrossRef  Google Scholar 

  • Cesteros Y, Salagre P, Medina F, Sueiras JE (1999) Several factors affecting faster rates of gibbsite formation. Chem Mater 11:123–129

    CrossRef  Google Scholar 

  • Christoph GG, Corbató CE, Hofman DA, Tettenhorst R (1979) The crystal structure of boehmite. Clay Clay Miner 27:81–86

    CrossRef  Google Scholar 

  • Conrad CF, Icopini GA, Yasuhara H, Bandstra JZ, Brantley SL, Heaney PJ (2007) Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochim Cosmochim Acta 71(3):531–542

    CrossRef  Google Scholar 

  • Counter J, Gerson A, Ralston J (1997) Caustic aluminate liquors: preparation and characterisation using static light scattering and in situ X-ray diffraction. Colloids Surf A Physicochem Eng Asp 126(2–3):103–112

    CrossRef  Google Scholar 

  • Counter JA, Addai-Mensah J, Raiston J (1999) The formation of Al(OH)3 crystals from supersaturated sodium aluminate solutions revealed by cryovitrification-transmission electron microscopy. Colloids Surf A Physicochem Eng Asp 154(3):389–398

    CrossRef  Google Scholar 

  • De Yoreo JJ, Sommerdijk NAJM, Dove PM (2017) Nucleation pathways in electrolyte solutions. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 1–24

    Google Scholar 

  • Demichelis R, Catti M, Dovesi R (2009) Structure and stability of the Al(OH)3 polymorphs doyleite and nordstrandite: a quantum mechanical ab initio study with the CRYSTAL06 code. J Phys Chem C 113:6785–6791

    CrossRef  Google Scholar 

  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64(19):3275–3281

    CrossRef  Google Scholar 

  • Fouilloux S, Tache O, Spalla O, Thill A (2011) Nucleation of silica nanoparticles measured in situ during controlled supersaturation increase: restructuring toward a monodisperse nonspherical shape. Langmuir 27(20):12304–12311

    CrossRef  Google Scholar 

  • Fu G, Nazar LF, Bain AD (1991) Ageing processes of alumina sol-gels: characterization of new aluminium polyoxycations by 27Al NMR spectroscopy. Chem Mater 3:602–610

    CrossRef  Google Scholar 

  • Gale JD, Rohl AL, Watling HR, Parkinson GM (1998) Theoretical investigation of the nature of aluminum-containing species present in alkaline solution. J Phys Chem B 102(50):10372–10382

    CrossRef  Google Scholar 

  • Gerson AR, Raiston J, Smart RSC (1996) An investigation of the mechanism of gibbsite nucleation using molecular modelling. Colloids Surf A Physicochem Eng Asp 110(1):105–117

    CrossRef  Google Scholar 

  • Gong X, Nie Z, Qian M, Liu J, Pederson LA, Hobbs DT, McDuffle NG (2003) Gibbsite to boehmite transformation in strongly caustic and nitrate environments. Ind Eng Chem Res 42:2163–2170

    CrossRef  Google Scholar 

  • Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT (2003) Size, volume fraction, and nucleation of Stober silica nanoparticles. J Colloid Interface Sci 266(2):346–358

    CrossRef  Google Scholar 

  • Gunnarsson I, Arnorsson S (2000) Amorphous silica solubility and the thermodynamic properties of H4SiO4 degrees in the range of 0 degrees to 350 degrees C at P-sat. Geochim Cosmochim Acta 64(13):2295–2307

    CrossRef  Google Scholar 

  • Gunnarsson I, Arnorsson S (2005) Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids. Geothermics 34(3):320–329

    CrossRef  Google Scholar 

  • Heaney PJ, Prewitt CT, Gibbs GV (1994) Silica: Physical behaviour, geochemistry & materials applications. Reviews in mineralogy Vol 29, Princeton, pp. 606

    Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    CrossRef  Google Scholar 

  • Herdianita NR, Browne PRL, Rodgers KA, Campbell KA (2000) Mineralogical and textural changes accompanying ageing of silica sinter. Miner Deposita 35(1):48–62

    CrossRef  Google Scholar 

  • Hsu PH, Bates TF (1964) Formation of X-ray amorphous and crystalline aluminium hydroxides. Mineral Mag 33:749–768

    CrossRef  Google Scholar 

  • Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, Juhász A, Altobelli N, Suzuki K, Masaki Y, Kuwatani T, Tachibana S, Sirono S, Moragas-Klostermeyer G, Srama R (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210

    CrossRef  Google Scholar 

  • Hu C, Liu H, Qu J, Wang D, Ru J (2006) Coagulation behavior of aluminium salts in eutrophic water: significance of Al13 species and pH control. Environ Sci Technol 40(1):325–331

    CrossRef  Google Scholar 

  • Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 C. Geochim Cosmochim Acta 69:293–303

    CrossRef  Google Scholar 

  • Iler RK (1979) The colloid chemistry of silica and silicates. Cornell University Press, Ithaca

    Google Scholar 

  • Johansson G (1960) On the crystal structure of some basic aluminium salts. Acta Chem Scand 14:771–773

    CrossRef  Google Scholar 

  • Johansson G, Lundgren G, Sillen LG, Soderquist R (1960) The crystal structure of a basic aluminum sulfate and the corresponding selenite. Acta Chem Scand 14:769–771

    CrossRef  Google Scholar 

  • Kasprzyk-Hordern B (2004) Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv Colloid Interface Sci 110:19–48

    CrossRef  Google Scholar 

  • Keller WD (1978) Diaspore recrystallized at low temperature. Am Mineral 63:326–329

    Google Scholar 

  • Kley M, Kempter A, Boyko V, Huber K (2014) Mechanistic studies of silica polymerization from supersaturated aqueous solutions by means of time-resolved light scattering. Langmuir 30(42):12664–12674

    CrossRef  Google Scholar 

  • Kloprogge JT, Duong LV, Wood BJ, Frost RL (2006) XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite. J Colloid Interface Sci 296:572–576

    CrossRef  Google Scholar 

  • Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21(13):5761–5769

    CrossRef  Google Scholar 

  • Leetmaa K, Gomez MA, Becze L, Guo F, Demopoulos GP (2014) Comparative molecular characterization of aluminum hydroxy-gels derived from chloride and sulphate salts. J Chem Technol Biotechnol 89(2):206–213

    CrossRef  Google Scholar 

  • Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structure and transition sequences. J Am Ceram Soc 81(8):1995–2012

    CrossRef  Google Scholar 

  • Li H, Addai-Mensah J, Thomas JC, Gerson AR (2003) A study of colloidal Al(III)-containing species in fresh/caustic aluminate solutions. Colloids Surf A Physicochem Eng Asp 223:83–94

    CrossRef  Google Scholar 

  • Li H, Addai-Mensah J, Thomas JC, Gerson AR (2005a) The crystallization mechanism of Al(OH)3 from sodium aluminate solutions. J Cryst Growth 279:508–520

    CrossRef  Google Scholar 

  • Li H, Addai-Mensah J, Thomas JC, Gerson AR (2005b) The influence of Al(III) supersaturation and NaOH concentration on the rate of crystallization of Al(OH)3 precursor particles from sodium aluminate solutions. J Colloid Interface Sci 286:511–519

    CrossRef  Google Scholar 

  • Li Y, Zhang Y, Chen F, Yang C, Zhang Y (2011) Polymorphic transformation of aluminum hydroxide precipitated from reactive NaAl(OH)4-NaHCO3 solution. Cryst Growth Des 11:1208–1214

    CrossRef  Google Scholar 

  • Loh JSC, Fogg AM, Watling HR, Parkinson GM, O’Hare D (2000) A kinetic investigation of gibbsite precipitation using in situ time resolved energy dispersive X-ray diffraction. Phys Chem Chem Phys 2:3597–3604

    CrossRef  Google Scholar 

  • Marshall WL, Chen CTA (1982) Amorphous silica solubilities. 5. Predictions of solubility behaviour in aqueous electrolyte solutions of 300°C. Geochim Cosmochim Acta 46(2):289–291

    CrossRef  Google Scholar 

  • Matsoukas T, Gulari E (1989) Monomer-addition growth with a slow initiation step: a growth model for silica particles from alkoxides. J Colloid Interface Sci 132(1):13–21

    CrossRef  Google Scholar 

  • Meier D, Gunnlaugsson E, Gunnarsson I, Jamtveit B, Peacock CL, Benning LG (2014) Microstructural and chemical variations in silica-rich precipitates at the Hellisheidi geothermal power plant. Min Mag 78(6):1381–1389

    CrossRef  Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    CrossRef  Google Scholar 

  • Moolenaar RJ, Evans JC, McKeever LD (1970) Structure of the aluminate ion in solutions at high pH. J Phys Chem 74(20):3629–3636

    CrossRef  Google Scholar 

  • Mountain BW, Benning LG, Boerema JA (2003) Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Can J Earth Sci 40(11):1643–1667

    CrossRef  Google Scholar 

  • Nail SL, White JL, Hem SL (1976a) Structure of aluminium hydroxide gel I: initial precipitate. J Pharm Sci 65(8):1189–1191

    Google Scholar 

  • Nail SL, White JL, Hem SL (1976b) Structure of aluminium hydroxide gel II: aging mechanism. J Pharm Sci 65(8):1192–1195

    CrossRef  Google Scholar 

  • Nail SL, White JL, Hem SL (1976c) Structure of aluminium hydroxide gel III: mechanism of stabilization by sorbitol. J Pharm Sci 65(8):1195–1198

    CrossRef  Google Scholar 

  • Noguera C, Fritz B, Clement A (2015) Precipitation mechanism of amorphous silica nanoparticles: a simulation approach. J Colloid Interface Sci 448:553–563

    CrossRef  Google Scholar 

  • Pancost RD, Pressley S, Coleman JM, Benning LG, Mountain BW (2005) Lipid biomolecules in silica sinters: indicators of microbial biodiversity. Environ Microbiol 7(1):66–77

    CrossRef  Google Scholar 

  • Panias D, Asimidis P, Paspaliaris I (2001) Solubility of boehmite in concentrated sodium hydroxide solutions: model development and assessment. Hydrometallurgy 59:15–29

    CrossRef  Google Scholar 

  • Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47(27):7567–7582

    CrossRef  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5(5):537–550

    CrossRef  Google Scholar 

  • Perry CC, Shafran KL (2001) The systematic study of aluminium speciation in medium concentrated aqueous solutions. J Inorg Biochem 87:115–124

    CrossRef  Google Scholar 

  • Petz JJI (1968) Structure of aluminium hydroxide gel. J Chem Phys 48(2):909–911

    CrossRef  Google Scholar 

  • Rausch WV, Bale HD (1964) Small-angle X-ray scattering from hydrolyzed aluminium nitrate solutions. J Chem Phys 40:3391–3394

    CrossRef  Google Scholar 

  • Rossiter DS, Fawell PD, Ilievski D, Parkinson GM (1998) Investigation of the unseeded nucleation of gibbsite, Al(OH)3, from synthetic bayer liquors. J Cryst Growth 191:525–536

    CrossRef  Google Scholar 

  • Rothbauer R, Zigan F, O’Daniel H (1967) Verfeinerung der struktur des bayerits, Al(OH)3. Z Kristallogr Krist 125:317–331

    CrossRef  Google Scholar 

  • Rothbaum HP, Rohde AG (1979) Kinetics of silica polymerization and deposition from dilute-solutions between 5°C and 180°C. J Colloid Interface Sci 71(3):533–559

    CrossRef  Google Scholar 

  • Rousseaux JM, Weisbecker P, Muhr H, Plasari E (2002) Aging of precipitated amorphous alumina gels. Ind Eng Chem Res 41(24):6059–6069

    CrossRef  Google Scholar 

  • Rowsell J, Nazar LF (2000) Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin moieté. J Am Chem Soc 122(15):3777–3778

    CrossRef  Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT (2001) Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J Raman Spectrosc 32:745–750

    CrossRef  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107:1–56

    CrossRef  Google Scholar 

  • Saalfeld H, Jarchow O (1968) Die Kristallstruktur von Nordstrandit, Al(OH)3. Neues Jahrb Mineral Abh 109:185–191

    Google Scholar 

  • Saalfeld H, Wedde M (1974) Refinement of the crystal structure of gibbsite, Al(OH)3. Z Kristallogr Krist 139:129–135

    CrossRef  Google Scholar 

  • Sipos P (2009) The structure of Al(III) in strongly alkaline solutions – a review. J Mol Liq 146:1–14

    CrossRef  Google Scholar 

  • Sipos P, Capewell SG, May PM, Hetter G, Laurenczy G, Lukács F, Roulet R (1998) Spectroscopic studies of the chemical speciation in concentrated alkaline solutions. J Chem Soc Dalton Trans 1998:3007–3012

    CrossRef  Google Scholar 

  • Smith SJ, Amin S, Woodfield BF, Boerio-Goates J, Campbell BJ (2013) Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent deficient environment. Inorg Chem 52:4411–4423

    CrossRef  Google Scholar 

  • Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW et al (2008) Detection of silica-rich deposits on Mars. Science 320(5879):1063–1067

    CrossRef  Google Scholar 

  • Stawski TM, Benning LG (2013) Chapter 5: SAXS in inorganic and bioinspired research. Methods Enzymol 532:95–127

    CrossRef  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62–69

    CrossRef  Google Scholar 

  • Stol RJ, van Helden AK, de Bruyn PL (1976) Hydrolysis-precipitation studies of aluminum (III) solutions. 2. A kinetic study and model. J Colloid Interface Sci 57(1):115–131

    CrossRef  Google Scholar 

  • Swaddle TW, Salerno J, Tregloan PA (1994) Aqueous aluminates, silicates, and aluminosilicates. Chem Soc Rev 23:319–325

    CrossRef  Google Scholar 

  • Tettenhorst R, Hofmann DA (1980) Crystal chemistry of boehmite. Clay Clay Miner 28(5):373–380

    CrossRef  Google Scholar 

  • Tobler DJ, Benning LG (2013) In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim Cosmochim Acta 114:156–168

    CrossRef  Google Scholar 

  • Tobler DJ, Stefansson A, Benning LG (2008) In-situ grown silica sinters in Icelandic geothermal areas. Geobiology 6(5):481–502

    CrossRef  Google Scholar 

  • Tobler DJ, Shaw S, Benning LG (2009) Quantification of initial steps of nucleation and growth of silica nanoparticles: an in-situ SAXS and DLS study. Geochim Cosmochim Acta 73(18):5377–5393

    CrossRef  Google Scholar 

  • van Straten HA, Holtkamp BTW, de Bruyn PL (1984) Precipitation from supersaturated aluminate solutions: I. Nucleation and growth of solid phases at room temperature. J Colloid Interface Sci 98(2):342–362

    CrossRef  Google Scholar 

  • Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1:99–115

    CrossRef  Google Scholar 

  • Wefers K, Misra C (1987) Oxides and hydroxides of aluminium, Alcoa Technical Paper 19. Aluminium Company of America, Pittsburgh

    Google Scholar 

  • Westall F, Walsh MM (2000) The diversity of fossil microorganisms in Archaen-age rocks. In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer, Amsterdam

    Google Scholar 

  • Williams LA, Crerar DA (1985) Silica diagenesis 2: general mechanisms. J Sediment Petrol 55(3):312–321

    Google Scholar 

  • Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128(42):13664–13665

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique J. Tobler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tobler, D.J., Stawski, T.M., Benning, L.G. (2017). Silica and Alumina Nanophases: Natural Processes and Industrial Applications. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_15

Download citation