Skip to main content

A Perspective on the Particle-Based Crystal Growth of Ferric Oxides, Oxyhydroxides, and Hydrous Oxides

  • Chapter
  • First Online:
Book cover New Perspectives on Mineral Nucleation and Growth

Abstract

The iron oxides, oxyhydroxides, and hydroxides, which are commonly referred to as simply the iron oxides, are important materials at and near the Earth’s surface and in a wide range of industrial settings. The reactivity, phase transformations, and aggregation state of iron oxide minerals are fundamentally linked. The size, microstructure, and morphology of iron oxide crystals are path dependent, and specific features can potentially be linked directly to the crystal growth mechanism(s) that produced them. Many conclusions regarding crystal growth mechanism rely on characterization of the final crystals, and this approach has been fruitful. The iron oxides literature contains many reports of crystals with textures, morphologies, and microstructures that are consistent with particle-based crystal growth. However, multiple crystal growth mechanisms can operate simultaneously, which lead to erasure of features produced at earlier stages of crystal growth. Thus, time-resolved and in situ materials characterization is crucial to elucidating the crystal growth mechanisms of iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey JK, Brinker CJ, Mecartney ML (1993) Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions. J Colloid Interface Sci 157:1–13

    Article  Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Thomsen Ebert T, Lee Penn R (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  Google Scholar 

  • Barron V, Torrent J (2013) Iron, manganese and aluminium oxides and oxyhydroxides. Miner Nanoscale 14:297–336

    Article  Google Scholar 

  • Burleson DJ, Penn RL (2006) Two-step growth of goethite from ferrihydrite. Langmuir 22:402–409

    Article  Google Scholar 

  • Burrows ND, Penn RL (2013) Cryogenic transmission electron microscopy: aqueous suspensions of nanoscale objects. Microsc Microanal 19:1542–1553

    Article  Google Scholar 

  • Burrows ND, Yuwono VM, Penn RL (2010) Quantifying the kinetics of crystal growth by oriented aggregation. Mater Res Sci Bull 35:133–137

    Article  Google Scholar 

  • Burrows ND, Hale CRH, Penn RL (2012) Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst Growth Des 12:4787–4797

    Article  Google Scholar 

  • Burrows ND, Hale CRH, Penn RL (2013) Effect of pH on the kinetics of crystal growth by oriented aggregation. Cryst Growth Des 13:3396–3403

    Article  Google Scholar 

  • Burrows ND, Kesselman E, Sabyrov K, Stemig A, Talmon Y, Penn RL (2014) Crystalline nanoparticle aggregation in non-aqueous solvents. CrystEngComm 16:1472–1481

    Article  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  • Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    Article  Google Scholar 

  • Chiche D, Digne M, Revel R, Chaneac C, Jolivet JP (2008) Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH. J Phys Chem C 112:8524–8533

    Article  Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structures, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cornell RM, Schwertmann U (2006) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd, completely revised and extended edition. Wiley-VCH, Weinheim

    Google Scholar 

  • Cornell RM, Schneider W, Giovanoli R (1989) Phase transformations in the ferrihydrite/cysteine system. Polyhedron 8:2829–2836

    Article  Google Scholar 

  • Dalmaschio CJ, Ribeiro C, Leite ER (2010) Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale 2:2336–2345

    Article  Google Scholar 

  • Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. Am Mineral 93:1326–1337

    Article  Google Scholar 

  • Davis TM, Drews TO, Ramanan H, He C, Dong JS, Schnablegger H, Katsoulakis M, Kokkoli E, Mccormick A, Penn RL, Tsapatsis M (2006) Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 5:400–408

    Article  Google Scholar 

  • De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang HZ, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Cölfen H, Dove PM (2015) Toward a comprehensive picture of crystallization by particle attachment. doi: 10.1126/science.aaa6760

    Google Scholar 

  • De Yoreo JJ, Sommerdijk NAJM, Dove PM (2017) Nucleation pathways in electrolyte solutions. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 1–24

    Google Scholar 

  • Drews TO, Tsapatsis M (2007) Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Micropor Meospor Mater 101:97–107

    Article  Google Scholar 

  • Drits VA, Sakharov BA, Salyn AL, Manceau A (1993) Structural model for ferrihydrite. Clay Miner 28:185–207

    Article  Google Scholar 

  • Fischer WR, Schwertmann U (1975) The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner 23:33–37

    Article  Google Scholar 

  • Frandsen C, Legg BA, Comolli LR, Zhang H, Gilbert B, Johnson E, Banfield JF (2014) Aggregation-induced growth and transformation of b-FeOOH nanorods to micron-sized a-Fe2O3 spindles. CrystEngComm 16:1451–1458

    Article  Google Scholar 

  • Gilbert B, Erbs JJ, Penn RL, Petkov V, Spagnoli D, Waychunas GA (2013) A disordered nanoparticle model for 6-line ferrihydrite. Am Mineral 98:1465–1476

    Article  Google Scholar 

  • Grogan JM, Schneider NM, Ross FM, Bau HH (2012) The nanoaquarium: a new paradigm in electron microscopy. J Indian Inst Sci 92:295–308

    Google Scholar 

  • Hapiuk D, Masenelli B, Masenelli-Varlot K, Tainoff D, Boisron O, Albin C, Mélinon P (2013) Oriented attachment of ZnO nanocrystals. J Phys Chem C 117:10220–10227

    Article  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Geochim Cosmochim Acta 72:A382

    Google Scholar 

  • Huang F, Zhang HZ, Banfield J (2003) Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett 3:373–378

    Article  Google Scholar 

  • Ivanov VK, Fedorov PP, Baranchikov AY, Osiko VV (2014) Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ Chem Rev 83:1204–1222

    Article  Google Scholar 

  • Janney DE, Cowley JM, Buseck PR (2000) Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. Am Mineral 85:1180–1187

    Article  Google Scholar 

  • Janney DE, Cowley JM, Buseck PR (2001) Structure of synthetic 6-line ferrihydrite by electron nanodiffraction. Am Mineral 86:327–335

    Article  Google Scholar 

  • Kandori K, Kawashima Y, Ishikawa T (1991) Characterization of monodispersed hematite particles by gas-adsorption and Fourier-transform infrared-spectroscopy. J Chem Soc Faraday Trans 87:2241–2246

    Article  Google Scholar 

  • Kumar S, Wang Z, Penn RL, Tsapatsis M (2008) A structural resolution cryo-TEM study of the early stages of MFI growth. J Am Chem Soc 130:17284–17286

    Article  Google Scholar 

  • Kumar S, Penn RL, Tsapatsis M (2011) On the nucleation and crystallization of silicalite-1 from a dilute clear sol. Micropor Mesopor Mater 144:74–81

    Article  Google Scholar 

  • Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–1018

    Article  Google Scholar 

  • Liu Y, Lin XM, Sun Y, Rajh T (2013) In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135:3764–3767

    Article  Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316:1726–1729

    Article  Google Scholar 

  • Mintova S, Olson NH, Senker J, Bein T (2002) Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. Angew Chem Int Ed 41:2558–2561

    Article  Google Scholar 

  • Morales MP, Gonzalezcarreno T, Serna CJ (1992) The formation of alpha-Fe2O3 monodispersed particles in solution. J Mater Res 7:2538–2545

    Article  Google Scholar 

  • Murphy PJ, Posner AM, Quirk JP (1976a) Characterization of partially neutralized ferric nitrate solutions. J Colloid Interface Sci 56:270–283

    Article  Google Scholar 

  • Murphy PJ, Posner AM, Quirk JP (1976b) Characterization of partially neutralized ferric perchlorate solutions. J Colloid Interface Sci 56:298–311

    Article  Google Scholar 

  • Murphy PJ, Posner AM, Quirk JP (1976c) Characterization of partially neutralized ferric-chloride solutions. J Colloid Interface Sci 56:284–297

    Article  Google Scholar 

  • Navrotsky A (2011) Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12:2207–2215

    Article  Google Scholar 

  • Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638

    Article  Google Scholar 

  • Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    Article  Google Scholar 

  • Nielsen MH, De Yoreo JJ (2017) Liquid phase TEM investigations of crystal nucleation, growth, and transformation. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 353–371

    Google Scholar 

  • Ocaña M, Morales MP, Serna CJ (1995) The growth mechanism of a-Fe2O3 ellipsoidal particles in solution. J Colloid Interface Sci 171:85–91

    Article  Google Scholar 

  • Pan Y, Brown A, Brydson R, Warley A, Li A, Powell J (2006) Electron beam damage studies of synthetic 6-line ferrihydrite and ferritin molecule cores within a human liver biopsy. Micron 37:403–411

    Article  Google Scholar 

  • Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108:12707–12712

    Article  Google Scholar 

  • Penn RL, Soltis JA (2014) Characterizing crystal growth by oriented aggregation. CrystEngComm 16:1409–1418

    Article  Google Scholar 

  • Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR (2001a) Epitaxial assembly in aged colloids. J Phys Chem B 105:2177–2182

    Article  Google Scholar 

  • Penn RL, Zhu C, Xu H, Veblen DR (2001b) Iron oxide coatings on sand grains from the Atlantic coastal plain: high-resolution transmission electron microscopy characterization. Geology 29:843–846

    Article  Google Scholar 

  • Penn RL, Erbs J, Gulliver D (2006) Controlled growth of alpha-FeOOH nanorods by exploiting-oriented aggregation. J Cryst Growth 293:1–4

    Article  Google Scholar 

  • Penn RL, Tanaka K, Erbs J (2007) Size dependent kinetics of oriented aggregation. J Cryst Growth 309:97–102

    Article  Google Scholar 

  • Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 155–184

    Google Scholar 

  • Ross FM (2015) Opportunities and challenges in liquid cell electron microscopy. Science 350:aaa9886-1–aaa9886-9

    Article  Google Scholar 

  • Schwahn D, Ma Y, Cölfen H (2007) Mesocrystal to single crystal transformation of d, l-alanine evidenced by small angle neutron scattering. J Phys Chem C 111:3224–3227

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner 31:277–284

    Article  Google Scholar 

  • Shaw S, Pepper SE, Bryan ND, Livens FR (2005) The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate. Am Mineral 90:1852–1860

    Article  Google Scholar 

  • Stawski TM, Benning LG (2013) SAXS in inorganic and bioinspired research. In: De Yoreo JJ (ed) Research methods in biomineralization science. Academic, San Diego

    Google Scholar 

  • Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) Characterization of hematite particles of different shapes. J Colloid Interface Sci 158:420–428

    Article  Google Scholar 

  • Van der Zee C, Roberts DR, Rancourt DG, Slomp CP (2003) Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology 31:993–996

    Article  Google Scholar 

  • Van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, Garcia-Ruiz JM (2012) The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336:69–72

    Article  Google Scholar 

  • Watson JHL, Cardell RR Jr, Heller W (1962) The internal structure of colloidal crystals of beta-FeOOH and remarks on their assemblies in schiller layers. J Phys Chem 66:1757–1763

    Article  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  Google Scholar 

  • Xiong Y, Tang Z (2012) Role of self-assembly in construction of inorganic nanostructural materials. Sci China-Chem 55:2272–2282

    Article  Google Scholar 

  • Xue X, Penn RL, Leite ER, Huang F, Lin Z (2014) Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm 16:1419–1429

    Article  Google Scholar 

  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64

    Article  Google Scholar 

  • Yuwono V, Burrows ND, Soltis JA, Penn RL (2010) Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J Am Chem Soc 132:2163–2165

    Article  Google Scholar 

  • Yuwono VM, Burrows ND, Soltis JA, Do T, Penn RL (2012) Aggregation of ferrihydrite nanoparticles in aqueous systems. Faraday Discuss 159:235–245

    Article  Google Scholar 

  • Zhang Q, Liu S, Yu S (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207

    Article  Google Scholar 

  • Zhang J, Huang F, Lin Z (2010) Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2:18–34

    Article  Google Scholar 

  • Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the University of Minnesota, the National Science Foundation (No. NSF-0957696), and the Nanostructural Materials and Processes Program at the University of Minnesota for the financial support. We also thank Characterization Facility at the University of Minnesota, a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org) via the MRSEC program (Figs. 13.2, 13.3, and 13.4). In addition, the TEM images shown in Fig. 13.5 were obtained using a Tecnai TF20 FEI microscope located at the Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the US Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Penn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Penn, R.L., Li, D., Soltis, J.A. (2017). A Perspective on the Particle-Based Crystal Growth of Ferric Oxides, Oxyhydroxides, and Hydrous Oxides. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_13

Download citation

Publish with us

Policies and ethics