Skip to main content

Phase Transformations in Calcium Phosphate Crystallization

  • Chapter
  • First Online:
Book cover New Perspectives on Mineral Nucleation and Growth

Abstract

Calcium phosphates are widespread in geochemistry, in biomineralization, and as biomaterials, and thus they have solicited great interest among researchers. In this chapter, prenucleation phenomena, amorphous phases, and crystallization processes from amorphous precursors are discussed for the calcium phosphate system. The focus is almost exclusively placed on pathways resulting in apatite formation, which is the mineral most employed in biomineralization. Phosphate speciation in solution is strongly pH dependent, and this in turn calls for extreme care when designing experiments to study calcium phosphate crystallization. This notion is illustrated by comparing in situ crystallization data obtained at two different pH values, one where the major species in the initial solution is phosphate and one where hydrogen phosphate dominates. Drastically different behavior is seen and discussed. Prior to crystallization, an amorphous calcium phosphate is typically observed, and it is argued that our current understanding of the structure of these phases is far from complete. Finally, prenucleation phenomena occurring before the formation of the first condensed phase are reviewed, and it is highlighted that this area in particular merits further attention, especially in the undersaturated concentration domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10:822–837

    Article  Google Scholar 

  • Berry RS, Rice SA, Ross J (2000) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, Mccomb DW, Porter AE, Stevens MD (2012) The role of intracellular calcium phosphate in osteoblast-mediated apatite formation. Proc Natl Acad Sci U S A 109:14170–14175

    Article  Google Scholar 

  • Bremholm M, Birkedal H, Iversen BB, Pedersen JS (2015) Structural evolution of aqueous zirconium acetate by time-resolved small-angle X-ray scattering and rheology. J Phys Chem C 119:12660–12667

    Article  Google Scholar 

  • Brown WE, Chow LC (1976) Chemical properties of bone-mineral. Annu Rev Mater Sci 6:213–236

    Article  Google Scholar 

  • Cantaert B, Beniash E, Meldrum FC (2013) Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chem Eur J 19:14918–14924

    Article  Google Scholar 

  • Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378

    Article  Google Scholar 

  • Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442

    Article  Google Scholar 

  • Davies E, Müller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MJ (2014) Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci U S A 111:E1354–E1363

    Article  Google Scholar 

  • De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Cölfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349(498):aaa6760-1–aaa6760-9

    Google Scholar 

  • De Yoreo JJ, Sommerdijk NAJM, Dove PM (2017) Nucleation pathways in electrolyte solutions. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 1–24

    Google Scholar 

  • Delgado-López JM, Guagliardi A (2017) Control over nanocrystalline apatite formation: what can the X-ray total scattering approach tell us. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 211–226

    Google Scholar 

  • Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, De With G, Sommerdijk NAJM (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9:1010–1014

    Article  Google Scholar 

  • Dorozhkin SV (2009) Calcium orthophosphates in nature. Biol Med Mater 2:399–498

    Google Scholar 

  • Dorozhkin SV (2010) Amorphous calcium (ortho)phosphates. Acta Biomater 6:4457–4475

    Article  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatite and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Falini G, Fermani S (2017) Nucleation and growth from a biomineralization perspective. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 185–198

    Google Scholar 

  • Fernandez-Martinez A, Lopez-Martinez H, Wang D (2017) Structural characteristics and the occurrence of polyamorphism in amorphous calcium carbonate. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 77–92

    Google Scholar 

  • Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822

    Article  Google Scholar 

  • Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371

    Article  Google Scholar 

  • Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627

    Article  Google Scholar 

  • Grynpas MD (2007) Transient precursor strategy or very small biological apatite crystals? Bone 41:162–164

    Article  Google Scholar 

  • Habraken WJEM, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, Van der Schoot P, Aichmayer B, De With G, Deyoreo JJ, Sommerdijk NAJM (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507

    Article  Google Scholar 

  • He W-X, Rajasekharan AN, Tehrani-Bagha AR, Andersson M (2015) Mesoscopically ordered bone-mimetic nanocomposites. Adv Mater 27:2260–2264

    Article  Google Scholar 

  • Hu Y-Y, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 107:22425–22429

    Article  Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  • Ibsen CJS, Birkedal H (2010) Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S. Nanoscale 2:2478–2486

    Article  Google Scholar 

  • Ibsen CJS, Birkedal H (2012) Influence of poly(acrylic acid) on apatite formation studied by in situ X-ray diffraction using an X-ray scattering reaction cell with high-precision temperature control. J Appl Crystallogr 45:976–981

    Article  Google Scholar 

  • Ibsen CJS, Mikladal BF, Jensen UB, Birkedal H (2014) Hierarchical tubular structures grown from the gel/liquid interface. Chem Eur J 20:16112–16120

    Article  Google Scholar 

  • Ibsen CJS, Chernyshov D, Birkedal H (2016a) Apatite formation from amorphous calcium phosphate and mixed amorphous calcium phosphate/amorphous calcium carbonate. Chem Eur J 22:12347–12357

    Google Scholar 

  • Ibsen CJS, Leemreize H, Mikladal BF, Skovgaard J, Eltzholtz JR, Bremholm M, Iversen BB, Birkedal H (2016b) Crystallization kinetics of bone-like apatite nanocrystals formed from amorphous calcium phosphate in water by in situ synchrotron powder diffraction: counter ions matter (Submitted)

    Google Scholar 

  • Jensen GV, Bremholm M, Lock N, Deen GR, Jensen TR, Iversen BB, Niederberger M, Pedersen JS, Birkedal H (2010) Anisotropic crystal growth kinetics of anatase TiO2 nanoparticles synthesized in a nonaqueous medium. Chem Mater 22:6044–6055

    Article  Google Scholar 

  • Jensen ACS, Hinge M, Birkedal H (2015) Calcite nucleation on the surface of PNIPAM-PAAc micelles studied by time resolved in situ PXRD. CrystEngComm 17:6940–6946

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium-phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53

    Article  Google Scholar 

  • Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A 107:6316–21

    Article  Google Scholar 

  • Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174:527–535

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen MH, De Yoreo JJ (2017) Liquid phase TEM investigations of crystal nucleation, growth, and transformation. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 353–371

    Google Scholar 

  • Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, De With G, Sommerdijk NAJM (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116

    Article  Google Scholar 

  • Omelon S, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    Article  Google Scholar 

  • Omelon S, Ariganello M, Bonnucci E, Grynpas M, Nanci A (2013) A review of phosphate mineral nucleation in biology and geobiology. Calcif Tissue Int 93:382–396

    Article  Google Scholar 

  • Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351

    Article  Google Scholar 

  • Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 8:273–281

    Article  Google Scholar 

  • Penn RL, Li D, Soltis JA (2017) A perspective on the particle-based crystal growth of ferric oxides, oxyhydroxides, and hydrous oxides. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 257–274

    Google Scholar 

  • Rajasekharan AN, Andersson M (2015) Role of nanoscale confinement on calcium phosphate formation at high supersaturation. Cryst Growth Des 15:2775–2780

    Article  Google Scholar 

  • Reichel V, Faivre D (2017) Magnetite nucleation and growth. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 275–292

    Google Scholar 

  • Tobler DJ, Stawski TM, and Benning LG (2017) Silica and alumina nanophases: natural processes and industrial applications. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 293–316

    Google Scholar 

  • Tseng Y-H, Birkbak ME, Birkedal H (2013) Spatial organization of hydroxyapatite nanorods on a substrate via a biomimetic approach. Cryst Growth Des 13:4213–4219

    Article  Google Scholar 

  • Tyrsted C, Lock N, Jensen KMØ, Christensen M, Bøjesen ED, Emerich H, Vaughan G, Billinge SJL, Iversen BB (2014) Evolution of atomic structure during nanoparticle formation. IUCrJ 1:165–171

    Article  Google Scholar 

  • Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  Google Scholar 

  • Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Birkedal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Birkedal, H. (2017). Phase Transformations in Calcium Phosphate Crystallization. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_10

Download citation

Publish with us

Policies and ethics