Skip to main content

Sparse Gaussian Elimination Modulo p: An Update

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

This paper considers elimination algorithms for sparse matrices over finite fields. We mostly focus on computing the rank, because it raises the same challenges as solving linear systems, while being slightly simpler.

We developed a new sparse elimination algorithm inspired by the Gilbert-Peierls sparse LU factorization, which is well-known in the numerical computation community. We benchmarked it against the usual right-looking sparse gaussian elimination and the Wiedemann algorithm using the Sparse Integer Matrix Collection of Jean-Guillaume Dumas.

We obtain large speedups (1000\(\times \) and more) on many cases. In particular, we are able to compute the rank of several large sparse matrices in seconds or minutes, compared to days with previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). http://dx.doi.org/10.1006/jsco.1996.0125. computational algebra and number theory, London (1993)

  3. Boyer, B., Eder, C., Faugère, J., Lachartre, S., Martani, F.: GBLA - gröbner basis linear algebra package. CoRR abs/1602.06097 (2016). http://arxiv.org/abs/1602.06097

  4. Cavallar, S.: Strategies in filtering in the number field sieve. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 209–232. Springer, Heidelberg (2000). http://dx.doi.org/10.1007/10722028_11

    Chapter  Google Scholar 

  5. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 22:1–22:14 (2008). http://doi.acm.org/10.1145/1391989.1391995

    Article  MathSciNet  Google Scholar 

  6. Cleveland Ashcraft, C., Grimes, R.G., Lewis, J.G., Peyton, P.W., Simon, H.D., Bjørstad, P.E.: Progress in sparse matrix methods for large linear systems on vector supercomputers. Int. J. High Perform. Comput. Appl. 1(4), 10–30 (1987). http://dx.doi.org/10.1177/109434208700100403

    Article  Google Scholar 

  7. Coppersmith, D.: Solving homogeneous linear equations over \(\mathbb{F}_2\) via block wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004). http://dx.doi.org/10.1145/992200.992206

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Book  Google Scholar 

  10. Davis, T.A., Natarajan, E.P.: Algorithm 907: KLU, A direct sparse solver for circuit simulation problems. ACM Trans. Math. Softw. 37(3) (2010). http://doi.acm.org/10.1145/1824801.1824814

    Google Scholar 

  11. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Numerical Mathematics and Scientific Computation, Oxford University Press, USA, first paperback edition edn. (1989)

    Google Scholar 

  13. Duff, I.S., Reid, J.K.: Some design features of a sparse matrix code. ACM Trans. Math. Softw. 5(1), 18–35 (1979). http://doi.acm.org/10.1145/355815.355817

    Article  MATH  Google Scholar 

  14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. 9(3), 302–325 (1983). http://doi.acm.org/10.1145/356044.356047

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumas, J.G., Villard, G.: Computing the rank of sparse matrices over finite fields. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2002, Proceedings of the fifth International Workshop on Computer Algebra in Scientific Computing, Yalta, Ukraine, pp. 47–62. Technische Universität München, Germany, September 2002. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/sparseeliminationCASC2002.pdf

  16. Dumas, J.-G.: Sparse integer matrices collection. http://hpac.imag.fr

  17. Dumas, J.-G., Elbaz-Vincent, P., Giorgi, P., Urbanska, A.: Parallel computation of the rank of large sparse matrices from algebraic \(k\)-theory. In: Maza, M.M., Watt, S.M. (eds.) Parallel Symbolic Computation, PASCO 2007, International Workshop, 27–28 July 2007, University of Western Ontario, London, Ontario, Canada, pp. 43–52. ACM, New York (2007). http://doi.acm.org/10.1145/1278177.1278186

  18. Faugére, J.-C., Lachartre, S.: Parallel gaussian elimination forgröbner bases computations in finite fields. In: Maza, M.M., Roch, J.-L. (eds.) PASCO, pp. 89–97. ACM, New York (2010)

    Google Scholar 

  19. Gilbert, J.R., Peierls, T.: Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Stat. Comput. 9(5), 862–874 (1988). http://dx.doi.org/10.1137/0909058

    Article  MathSciNet  MATH  Google Scholar 

  20. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-Bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-14623-7_18

    Chapter  Google Scholar 

  21. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 109–133. Springer, Heidelberg (1991). http://dx.doi.org/10.1007/3-540-38424-3_8

    Google Scholar 

  22. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Manage. Sci. 3(3), 255–269 (1957). http://dx.doi.org/10.1287/mnsc.3.3.255

    Article  MathSciNet  MATH  Google Scholar 

  23. May, J.P., Saunders, B.D., Wan, Z.: Efficient matrix rank computation with application to the study of strongly regular graphs. In: Wang, D. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC 2007, Waterloo, Ontario, Canada, July 28–August 1, 2007, Proceedings, pp. 277–284. ACM (2007). http://doi.acm.org/10.1145/1277548.1277586

  24. Saunders, B.D., Youse, B.S.: Large matrix, small rank. In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pp. 317–324. ACM, New York (2009). http://doi.acm.org/10.1145/1576702.1576746

  25. Saunders, D.: Matrices with two nonzero entries per row. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2015, pp. 323–330. ACM, New York (2015). http://doi.acm.org/10.1145/2755996.2756679

  26. The CADO-NFS Development Team: CADO-NFS, an implementation of the number field sieve algorithm (2015), release2.2.0. http://cado-nfs.gforge.inria.fr/

  27. The FFLAS-FFPACK group: FFLAS-FFPACK: Finite Field Linear Algebra Subroutines/Package, v2.0.0 edn. (2014). http://linalg.org/projects/fflas-ffpack

  28. The Sage Developers: Sage Mathematics Software (Version 5.7) (2013). http://www.sagemath.org

  29. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986). http://dx.doi.org/10.1109/TIT.1986.1057137

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Claire Delaplace was supported by the french ANR under the BRUTUS project. We thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Bouillaguet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bouillaguet, C., Delaplace, C. (2016). Sparse Gaussian Elimination Modulo p: An Update. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics