Skip to main content

Algorithmic Computation of Polynomial Amoebas

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

We present algorithms for computation and visualization of polynomial amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented in computer algebra systems Matlab 8 and Mathematica 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dickenstein, A., Sadykov, T.M.: Algebraicity of solutions to the Mellin system and its monodromy. Dokl. Math. 75(1), 80–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dickenstein, A., Sadykov, T.M.: Bases in the solution space of the Mellin system. Sbornik Math. 198(9–10), 1277–1298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Forsberg, M.: Amoebas and Laurent Series. Doctoral Thesis presented at Royal Institute of Technology, Stockholm, Sweden. Bromma Tryck AB, ISBN 91-7170-259-8 (1998)

    Google Scholar 

  4. Forsberg, M., Passare, M., Tsikh, A.K.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151, 45–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics, Theory & Applications. Birkhäuser Boston Inc., Boston (1994)

    Book  MATH  Google Scholar 

  6. Johansson, P.: On the topology of the coamoeba. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7447-933-1 (2014)

    Google Scholar 

  7. Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290, 277–285 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots of complex polynomials. Thesis, City University of New York, New York (1985)

    Google Scholar 

  9. Nilsson, L.: Amoebas, discriminants and hypergeometric functions. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7155-889-3 (2009)

    Google Scholar 

  10. Passare, M., Sadykov, T.M., Tsikh, A.K.: Nonconfluent hypergeometric functions in several variables and their singularities. Compos. Math. 141(3), 787–810 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rullgård, H.: Stratification des espaces de polynômes de Laurent et la structure de leurs amibes (French). Comptes Rendus de l’Academie des Sciences - Series I: Mathematics 331(5), 355–358 (2000)

    Google Scholar 

  13. Theobald, T.: Computing amoebas. Experiment. Math. 11(4), 513–526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Theobald, T., de Wolff, T.: Amoebas of genus at most one. Adv. Math. 239, 190–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sadykov, T.M., Tsikh, A.K.: Hypergeometric and Algebraic Functions in Several Variables (Russian). Nauka (2014)

    Google Scholar 

  16. Sadykov, T.M.: On a multidimensional system of hypergeometric differential equations. Siberian Math. J. 39(5), 986–997 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Viro, T.: What is an amoeba? Not. AMS 49(8), 916–917 (2002)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the state order of the Ministry of Education and Science of the Russian Federation for Siberian Federal University (task 1.1462.2014/K), by grant of the Government of the Russian Federation for investigations under the guidance of the leading scientists of the Siberian Federal University (contract No. 14.Y26.31.0006) and by the Russian Foundation for Basic Research, projects 15-31-20008-mol_a_ved and 16-41-240764-r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sadykov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bogdanov, D.V., Kytmanov, A.A., Sadykov, T.M. (2016). Algorithmic Computation of Polynomial Amoebas. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics