# Algorithmic Computation of Polynomial Amoebas

• D. V. Bogdanov
• A. A. Kytmanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9890)

## Abstract

We present algorithms for computation and visualization of polynomial amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented in computer algebra systems Matlab 8 and Mathematica 9.

## Keywords

Amoebas Newton polytope Optimal algebraic hypersurface The contour of an amoeba Hypergeometric functions

## Notes

### Acknowledgements

This research was supported by the state order of the Ministry of Education and Science of the Russian Federation for Siberian Federal University (task 1.1462.2014/K), by grant of the Government of the Russian Federation for investigations under the guidance of the leading scientists of the Siberian Federal University (contract No. 14.Y26.31.0006) and by the Russian Foundation for Basic Research, projects 15-31-20008-mol_a_ved and 16-41-240764-r_a.

## References

1. 1.
Dickenstein, A., Sadykov, T.M.: Algebraicity of solutions to the Mellin system and its monodromy. Dokl. Math. 75(1), 80–82 (2007)
2. 2.
Dickenstein, A., Sadykov, T.M.: Bases in the solution space of the Mellin system. Sbornik Math. 198(9–10), 1277–1298 (2007)
3. 3.
Forsberg, M.: Amoebas and Laurent Series. Doctoral Thesis presented at Royal Institute of Technology, Stockholm, Sweden. Bromma Tryck AB, ISBN 91-7170-259-8 (1998)Google Scholar
4. 4.
Forsberg, M., Passare, M., Tsikh, A.K.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151, 45–70 (2000)
5. 5.
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics, Theory & Applications. Birkhäuser Boston Inc., Boston (1994)
6. 6.
Johansson, P.: On the topology of the coamoeba. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7447-933-1 (2014)Google Scholar
7. 7.
Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290, 277–285 (1991)
8. 8.
Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots of complex polynomials. Thesis, City University of New York, New York (1985)Google Scholar
9. 9.
Nilsson, L.: Amoebas, discriminants and hypergeometric functions. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7155-889-3 (2009)Google Scholar
10. 10.
Passare, M., Sadykov, T.M., Tsikh, A.K.: Nonconfluent hypergeometric functions in several variables and their singularities. Compos. Math. 141(3), 787–810 (2005)
11. 11.
Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008)
12. 12.
Rullgård, H.: Stratification des espaces de polynômes de Laurent et la structure de leurs amibes (French). Comptes Rendus de l’Academie des Sciences - Series I: Mathematics 331(5), 355–358 (2000)Google Scholar
13. 13.
Theobald, T.: Computing amoebas. Experiment. Math. 11(4), 513–526 (2002)
14. 14.
Theobald, T., de Wolff, T.: Amoebas of genus at most one. Adv. Math. 239, 190–213 (2013)
15. 15.
Sadykov, T.M., Tsikh, A.K.: Hypergeometric and Algebraic Functions in Several Variables (Russian). Nauka (2014)Google Scholar
16. 16.
Sadykov, T.M.: On a multidimensional system of hypergeometric differential equations. Siberian Math. J. 39(5), 986–997 (1998)
17. 17.
Viro, T.: What is an amoeba? Not. AMS 49(8), 916–917 (2002)Google Scholar

© Springer International Publishing AG 2016

## Authors and Affiliations

• D. V. Bogdanov
• 1
• A. A. Kytmanov
• 2