Algorithmic Computation of Polynomial Amoebas

  • D. V. Bogdanov
  • A. A. Kytmanov
  • T. M. Sadykov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9890)


We present algorithms for computation and visualization of polynomial amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented in computer algebra systems Matlab 8 and Mathematica 9.


Amoebas Newton polytope Optimal algebraic hypersurface The contour of an amoeba Hypergeometric functions 



This research was supported by the state order of the Ministry of Education and Science of the Russian Federation for Siberian Federal University (task 1.1462.2014/K), by grant of the Government of the Russian Federation for investigations under the guidance of the leading scientists of the Siberian Federal University (contract No. 14.Y26.31.0006) and by the Russian Foundation for Basic Research, projects 15-31-20008-mol_a_ved and 16-41-240764-r_a.


  1. 1.
    Dickenstein, A., Sadykov, T.M.: Algebraicity of solutions to the Mellin system and its monodromy. Dokl. Math. 75(1), 80–82 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dickenstein, A., Sadykov, T.M.: Bases in the solution space of the Mellin system. Sbornik Math. 198(9–10), 1277–1298 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Forsberg, M.: Amoebas and Laurent Series. Doctoral Thesis presented at Royal Institute of Technology, Stockholm, Sweden. Bromma Tryck AB, ISBN 91-7170-259-8 (1998)Google Scholar
  4. 4.
    Forsberg, M., Passare, M., Tsikh, A.K.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151, 45–70 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics, Theory & Applications. Birkhäuser Boston Inc., Boston (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Johansson, P.: On the topology of the coamoeba. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7447-933-1 (2014)Google Scholar
  7. 7.
    Kapranov, M.M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290, 277–285 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, M.-H.: Computational complexity of the Euler type algorithms for the roots of complex polynomials. Thesis, City University of New York, New York (1985)Google Scholar
  9. 9.
    Nilsson, L.: Amoebas, discriminants and hypergeometric functions. Doctoral Thesis presented at Stockholm University, Sweden. US AB, ISBN 978-91-7155-889-3 (2009)Google Scholar
  10. 10.
    Passare, M., Sadykov, T.M., Tsikh, A.K.: Nonconfluent hypergeometric functions in several variables and their singularities. Compos. Math. 141(3), 787–810 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rullgård, H.: Stratification des espaces de polynômes de Laurent et la structure de leurs amibes (French). Comptes Rendus de l’Academie des Sciences - Series I: Mathematics 331(5), 355–358 (2000)Google Scholar
  13. 13.
    Theobald, T.: Computing amoebas. Experiment. Math. 11(4), 513–526 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Theobald, T., de Wolff, T.: Amoebas of genus at most one. Adv. Math. 239, 190–213 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sadykov, T.M., Tsikh, A.K.: Hypergeometric and Algebraic Functions in Several Variables (Russian). Nauka (2014)Google Scholar
  16. 16.
    Sadykov, T.M.: On a multidimensional system of hypergeometric differential equations. Siberian Math. J. 39(5), 986–997 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Viro, T.: What is an amoeba? Not. AMS 49(8), 916–917 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • D. V. Bogdanov
    • 1
  • A. A. Kytmanov
    • 2
  • T. M. Sadykov
    • 1
  1. 1.Plekhanov Russian UniversityMoscowRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations