Advertisement

Graphene-Based Materials in Biosensing, Bioimaging, and Therapeutics

  • Sivaramapanicker Sreejith
  • Hrishikesh Joshi
  • Yanli ZhaoEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Biomedical research has become extremely important in these days due to its direct impact on human health. The quest for the development of sophisticated materials for sensitive sensing, selective imaging and effective therapeutics has led to the creation of a unique class of materials known as graphene-based materials (GBMs). GBMs can be broadly classified into three groups: graphene-based nanocomposites, graphene quantum dots, and graphene-wrapped hybrids. These materials possess remarkable electrical, physical, and chemical properties, which can be exploited to develop efficient sensors, probes, and drugs. In this chapter, a detailed account about the synthetic strategies of these materials along with the mechanisms governing their performance in biosensing, bioimaging, and therapeutics is presented. The chapter highlights the suitability of GBMs in non-conventional and emerging techniques such as nonlinear photonics and photoacoustic imaging. The GBMs can also be employed to fabricate synergistic materials that are capable of simultaneous imaging and therapeutic actions. Therefore, the GBMs provide a promising platform for cutting-edge developments in the field of biomedical research.

Keywords

Bioimaging Biosensing Graphene Hybrid materials Therapeutics 

Notes

Acknowledgments

This work is supported by the NTU-A*Star Silicon Technologies Centre of Excellence under the program Grant No. 11235100003 and the NTU-Northwestern Institute for Nanomedicine.

References

  1. 1.
    Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17(8):1225–1236CrossRefGoogle Scholar
  2. 2.
    Hazra S, Joshi H, Ghosh BK, Ahmed A, Gibson T, Millner P, Ghosh NN (2015) Development of a novel and efficient H2O2 sensor by simple modification of a screen printed Au electrode with Ru nanoparticle loaded functionalized mesoporous SBA15. RSC Adv 5(43):34390–34397CrossRefGoogle Scholar
  3. 3.
    Lehmana SE, Larsen SC (2014) Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano 1:200–213CrossRefGoogle Scholar
  4. 4.
    Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294CrossRefGoogle Scholar
  5. 5.
    Kelarakis A (2015) Graphene quantum dots: in the crossroad of graphene, quantum dots and carbogenic nanoparticles. Curr Opin Colloid Interface Sci 20:354–361CrossRefGoogle Scholar
  6. 6.
    Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138CrossRefGoogle Scholar
  7. 7.
    Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46(46):8748–8758CrossRefGoogle Scholar
  8. 8.
    Kannan RY, Salacinski HJ, Vara DS, Odlyha M, Seifalian AM (2006) Review paper: principles and applications of surface analytical techniques at the vascular interface. J Biomater Appl 21(1):5–32CrossRefGoogle Scholar
  9. 9.
    Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124(32):9606–9612CrossRefGoogle Scholar
  10. 10.
    Huang X, QiX Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRefGoogle Scholar
  11. 11.
    Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257CrossRefGoogle Scholar
  12. 12.
    Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424CrossRefGoogle Scholar
  13. 13.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  14. 14.
    Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229CrossRefGoogle Scholar
  15. 15.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  17. 17.
    Ham H, Park NH, Kang I, Kim HW, Shim KB (2012) Catalyst-free fabrication of graphene nanosheets without substrates using multiwalled carbon nanotubes and a spark plasma sintering process. Chem Commun 48:6672–6674CrossRefGoogle Scholar
  18. 18.
    Schaffel F, Wilson M, Warner JH (2012) Motion of light adatoms and molecules on the surface of few-layer graphene. ACS Nano 5(12):9428–9441CrossRefGoogle Scholar
  19. 19.
    Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73CrossRefGoogle Scholar
  20. 20.
    Mevold AH, Hsu WW, Hardiansyah A, Huang LY, Yang MC, Liu TY, Chan TY, Wang KS, Su YA, Jeng RJ, Wang JK, Wang YL (2015) Fabrication of gold nanoparticles/graphene-PDDA nanohybrids for bio-detection by SERS nanotechnology. Nanoscale Res Lett 10:397CrossRefGoogle Scholar
  21. 21.
    Tai H, Zhen Y, Liu C, Ye Z, Xie G, Du X, Jiang Y (2016) Facile development of high performance QCM Humidity sensor based on protonated polyethyleneimine-graphene oxide nanocomposite thin film. Sens Actuat B Chem 230:501–509CrossRefGoogle Scholar
  22. 22.
    Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KCW, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8(15):8276–8287CrossRefGoogle Scholar
  23. 23.
    Panigrahy B, Sarmaa DD (2015) Enhanced photocatalytic efficiency of AuPd nanoalloy decorated ZnO-reduced graphene oxide nanocomposites. RSC Adv 5:8918–8928CrossRefGoogle Scholar
  24. 24.
    Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039CrossRefGoogle Scholar
  25. 25.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849CrossRefGoogle Scholar
  26. 26.
    Zhang F, Liu F, Wang C, Xin X, Liu J, Guo S, Zhang J (2016) Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl Mater Interfaces 8(3):2104–2110CrossRefGoogle Scholar
  27. 27.
    Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel ELG, Hwang CC, Ruan G, Ceriotti G, Raji ARO, Martí AA, Tour JM (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943Google Scholar
  28. 28.
    Sreejith S, Ma X, Zhao Y (2012) Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J Am Chem Soc 134:17346–17349CrossRefGoogle Scholar
  29. 29.
    Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288CrossRefGoogle Scholar
  30. 30.
    Mohanty N, Fahrenholtz M, Nagaraja A, Boyle D, Berry V (2011) Impermeable graphenic encasement of bacteria. Nano Lett 11:1270–1275CrossRefGoogle Scholar
  31. 31.
    Lanni F, Bailey B, Farkas DL, Taylor DL (1993) Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging 3(1):187–196CrossRefGoogle Scholar
  32. 32.
    Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70(13):2446–2453CrossRefGoogle Scholar
  33. 33.
    Koike C, Watanabe M, Oku N, Tsukada H, Irimura T, Okada S (1997) Tumor cells with organ-specific metastatic ability show distinctive trafficking in vivo: analyses by positron emission tomography and bioimaging. Cancer Res 15(57):3612–3619Google Scholar
  34. 34.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514CrossRefGoogle Scholar
  35. 35.
    Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476CrossRefGoogle Scholar
  36. 36.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRefGoogle Scholar
  37. 37.
    Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074CrossRefGoogle Scholar
  38. 38.
    Kanga X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(12):901–905CrossRefGoogle Scholar
  39. 39.
    Liu B, Tang D, Tang J, Su B, Lia Q, Chen G (2011) A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Analyst 136:2218–2220CrossRefGoogle Scholar
  40. 40.
    Lina D, Wua J, Jua H, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158CrossRefGoogle Scholar
  41. 41.
    Nguyena KT, Zhao Y (2014) Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6:6245–6266CrossRefGoogle Scholar
  42. 42.
    Tian J, Huang T, Wang P, Lu J (2015) GOD/HRP bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing. J Electrochem Soc 162(12):B319–B325CrossRefGoogle Scholar
  43. 43.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  44. 44.
    Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29(1):159–166CrossRefGoogle Scholar
  45. 45.
    Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal Chem 85(23):11643–11649CrossRefGoogle Scholar
  46. 46.
    Gopalan AI, Muthuchamy N, Komathi S, Lee KP (2015) A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron 15:30540–30546Google Scholar
  47. 47.
    Jang HD, Kim SK, Chang H, Roh KM, Choi JW (2012) A glucose biosensor based on TiO2-graphene composite. Biosens Bioelectron 38:184–188CrossRefGoogle Scholar
  48. 48.
    Chen Y, Li Y, Sun D, Tian D, Zhang J, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611CrossRefGoogle Scholar
  49. 49.
    Montornes JM, Vreeke MS, Katakis I (2008) Glucose biosensors. In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, Chichester. doi: 10.1002/9780470753842.ch5
  50. 50.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613CrossRefGoogle Scholar
  51. 51.
    Hua Y, Li F, Han D, Wu T, Zhang Q, Niu L, Bao Y (2012) Simple and label-free electrochemical assay for signal-On DNA hybridization directly at undecorated graphene oxide. Anal Chim Acta 753:82–89CrossRefGoogle Scholar
  52. 52.
    Ali S, Hassan A, Hassan G, Bae J, Lee CH (2016) All-printed humidity sensor based on gmethyl-red/methyl-red composite with high sensitivity. Carbon 106:23–32CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoau carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Bai X, Wang X, Shiu KK, Zhu Y, Jiang H (2014) Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86:9459–9465CrossRefGoogle Scholar
  55. 55.
    Wang H, Xia B, Yan Y, Li N, Wang JY, Wang X (2013) Water-soluble polymer exfoliated graphene: as catalyst support and sensor. J Phys Chem B 117:5606–5613CrossRefGoogle Scholar
  56. 56.
    He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan CA (2010) Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459CrossRefGoogle Scholar
  57. 57.
    Chen Q, Wei W, Lin JM (2011) Homogeneous detection of concanavalin a using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens Bioelectron 26(11):4497–4502CrossRefGoogle Scholar
  58. 58.
    Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, Xu C (2015) Building An Aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces 7(14):7492–7496CrossRefGoogle Scholar
  59. 59.
    Chang H, Tang L, Wang Y, Li JJJ (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346CrossRefGoogle Scholar
  60. 60.
    Zhang M, Yin BC, Wang XF, Ye BC (2011) Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 47:2399–2401CrossRefGoogle Scholar
  61. 61.
    Li H, Sun DE, Liu Y, Liu Z (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156CrossRefGoogle Scholar
  62. 62.
    Myung S, Solanki A, Kim C, Park J, Kim KS, Lee KB (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225CrossRefGoogle Scholar
  63. 63.
    Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517CrossRefGoogle Scholar
  64. 64.
    Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499CrossRefGoogle Scholar
  65. 65.
    Huang Y, Dong X, Liu Y, Lic LL, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362CrossRefGoogle Scholar
  66. 66.
    Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090CrossRefGoogle Scholar
  67. 67.
    Fu X, Chen L, Li J, Lin M, You H, Wang W (2012) Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosen Bioelectron 34(1):227–231CrossRefGoogle Scholar
  68. 68.
    Huang KJ, Liu YJ, Cao JT, Wang HB (2014) An aptamer electrochemical assay for sensitive detection of immunoglobulin e based on tungsten disulfide-graphene composites and gold nanoparticles. RSC Adv 4:36742–36748CrossRefGoogle Scholar
  69. 69.
    Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Boukherroub R, Szunerits S (2014) Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem 86(22):11211–11217CrossRefGoogle Scholar
  70. 70.
    Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-Type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493CrossRefGoogle Scholar
  71. 71.
    Chung K, Rani A, Lee JE, Kim JE, Kim Y, Yang H, Kim SO, Kim D, Kim DH (2015) Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. ACS Appl Mater Interfaces 7:144–151CrossRefGoogle Scholar
  72. 72.
    Ma X, Qu Q, Zhao Y, Luo Z, Zhao Y, Ng KW, Zhao Y (2013) Graphene oxide wrapped gold nanoparticles for intracellular raman imaging and drug delivery. J Mater Chem B 1:6495–6500CrossRefGoogle Scholar
  73. 73.
    Xu S, Man B, Jiang S, Wang J, Wei J, Xu S, Liu H, Gao S, Liu H, Li Z, Li H, Qiu H (2015) Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition As surface-enhanced raman scattering substrate for label-free detection of adenosine. ACS Appl Mater Interfaces 7:10977–10987CrossRefGoogle Scholar
  74. 74.
    Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699CrossRefGoogle Scholar
  75. 75.
    Hu SH, Chen YW, Hung YT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754CrossRefGoogle Scholar
  76. 76.
    Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide−polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem 22:2558–2567CrossRefGoogle Scholar
  77. 77.
    Oh SD, Kim J, Lee DH, Kim JH, Jang CW, Kim S, Choi SH (2016) Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography. J Phys D Appl Phys 49:025308CrossRefGoogle Scholar
  78. 78.
    Bartelmess J, Quinn SJ, Giordani S (2015) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and raman imaging. Chem Soc Rev 44:4672–4698CrossRefGoogle Scholar
  79. 79.
    Qu D, Sun Z, Zheng M, Li J, Zhang Y, Zhang G, Zhao H, Liu X, Xi Z (2015) Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv Optical Mater 3:360–367CrossRefGoogle Scholar
  80. 80.
    Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441CrossRefGoogle Scholar
  81. 81.
    Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N (2014) Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett 3:1064–1068CrossRefGoogle Scholar
  82. 82.
    Wang Y, Chen JT, Yan XP (2013) Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal Chem 85:2529–2535CrossRefGoogle Scholar
  83. 83.
    Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2:84–85CrossRefGoogle Scholar
  84. 84.
    Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene − nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531CrossRefGoogle Scholar
  85. 85.
    Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10:924–936CrossRefGoogle Scholar
  86. 86.
    Nguyen KT, Sreejith S, Joseph J, He T, Borah P, Guan EY, Lye SW, Sun H, Zhao Y (2014) Poly(acrylic acid)-capped and dye-loaded graphene oxide-mesoporous silica: a nano-sandwich for two-photon and photoacoustic dual-mode imaging. Part Part Syst Charact 31:1060–1066CrossRefGoogle Scholar
  87. 87.
    Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z (2013) Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20):4786–4793CrossRefGoogle Scholar
  88. 88.
    Turcheniuk K, Boukherroub R, Szunerits S (2015) Gold-graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 3:4301–4324CrossRefGoogle Scholar
  89. 89.
    Mendes RG, Bachmatiuk A, El-Gendy AA, Melkhanova S, Klingeler R, Büchner B, Rümmeli MH (2012) A facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116(44):23749–23756CrossRefGoogle Scholar
  90. 90.
    Kumar KS, Kumar VB, Paik P (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart 2013:672059CrossRefGoogle Scholar
  91. 91.
    Jiang BP, Hu LF, Wang DJ, Ji SC, Shen XC, Liang H (2012) Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. J Mater Chem B 2:7141–7148CrossRefGoogle Scholar
  92. 92.
    Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu S (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323CrossRefGoogle Scholar
  93. 93.
    Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y (2015) Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces 7:9807–9816CrossRefGoogle Scholar
  94. 94.
    Kim YK, Na HK, Kim S, Jang H, Chang SJ, Min DH (2015) One-pot synthesis of multifunctional Au@graphene oxide nanocolloid Core@Shell nanoparticles for raman bioimaging, photothermal, and photodynamic therapy. Small 11(21):2527–2535CrossRefGoogle Scholar
  95. 95.
    Moon H, Kumar D, Kim H, Sim C, Chang JH, Kim JM, Kim H, Lim DK (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719CrossRefGoogle Scholar
  96. 96.
    Liu Y, Bai J, Jia X, Jiang X, Guo Z (2015) Fabrication of multifunctional SiO2@GN-serum composites for chemo-photothermal synergistic therapy. ACS Appl Mater Interfaces 7(1):112–121CrossRefGoogle Scholar
  97. 97.
    Zheng FF, Zhang PH, Xi Y, Chen JJ, Li LL, Zhu JJ (2015) Aptamer/graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal Chem 87(23):11739–11745CrossRefGoogle Scholar
  98. 98.
    Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRefGoogle Scholar
  99. 99.
    Melamed JR, Edelstein RS, Day ES (2015) Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9(1):6–11CrossRefGoogle Scholar
  100. 100.
    Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee C-S, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596Google Scholar
  101. 101.
    Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Adv Mat 24(13):1722–1728CrossRefGoogle Scholar
  102. 102.
    Bian X, Song ZL, Qian Y, Gao W, Cheng ZQ, Chen L, Liang H, Ding D, Nie XK, Chen Z, Tan W (2014) Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 4:6093CrossRefGoogle Scholar
  103. 103.
    He D, He X, Wang K, Zou Z, Yang X, Li X (2014) Remote-controlled drug release from graphene oxide-capped mesoporous silica to cancer cells by photoinduced pH-jump activation. Langmuir 30:7182–7189CrossRefGoogle Scholar
  104. 104.
    Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sivaramapanicker Sreejith
    • 1
  • Hrishikesh Joshi
    • 1
  • Yanli Zhao
    • 1
    • 2
    Email author
  1. 1.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations