Skip to main content

Microstructural Effects During Crackling Noise Phenomena

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Crackling noise phenomena typically exhibit scale-free statistical distributions (e.g., power law) of the measured variables. Such a universal behavior reveals little information regarding the physical mechanisms and microstructures that are either responsible and/or affect crackling behavior. Here, we address this issue and show three physical systems in which the distributions of certain variables are centered around a most probable value, which is related to a characteristic size of the internal microstructure. These variables represent microstructural-related events. At the same time, each microstructural-related event proceeds through a multitude of smaller mesoscopic events that span several orders of magnitude. Statistical analyses of other variables, which are associated with the mesoscopic events, follow a scale-invariant power law distribution. The origins for the co-existence of events at different scales and their different statistical distributions are discussed in light of the physical characteristics of the investigated systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.K.H. Salje, K.A. Dahmen, Crackling noise in disordered materials. Annu. rev. condens. matter phys. 5(1), 233–254 (2014). doi:10.1146/annurev-conmatphys-031113-133838

    Article  Google Scholar 

  2. J.P. Sethna, K.A. Dahmen, C.R. Myers, Crackling noise. Nature 410(6825), 242–250 (2001)

    Article  ADS  Google Scholar 

  3. P.A. Houle, J.P. Sethna, Acoustic emission from crumpling paper. Phys. Rev. E 54(1), 278–283 (1996)

    Article  ADS  Google Scholar 

  4. J.P. Sethna, Statistical mechanics: crackling crossover. Nat. Phys. 3(8), 518–519 (2007)

    Article  MathSciNet  Google Scholar 

  5. J. Baró, Á. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Statistical similarity between the compression of a porous material and earthquakes. Phys. Rev. Lett. 110(8), 088702 (2013)

    Article  ADS  Google Scholar 

  6. E.K.H. Salje, D.E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, W. Schranz, Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2. Philos. Mag. Lett. 91(8), 554–560 (2011). doi:10.1080/09500839.2011.596491

    Article  ADS  Google Scholar 

  7. P.O. Castillo-Villa, J. Baró, A. Planes, E.K.H. Salje, P. Sellappan, W.M. Kriven, Crackling noise during failure of alumina under compression: the effect of porosity. J. Phys. Condens. Matter 25(29), 292202 (2013)

    Article  Google Scholar 

  8. E. Vives, J. Ortín, L. Mañosa, I. Ràfols, R. Pérez-Magrané, A. Planes, Distributions of avalanches in martensitic transformations. Phys. Rev. Lett. 72(11), 1694–1697 (1994)

    Article  ADS  Google Scholar 

  9. F.J. Romero, J. Manchado, J.M. Martín-Olalla, M.C. Gallardo, E.K.H. Salje, Dynamic heat flux experiments in Cu\(_{67.64}\)Zn\(_{16.71}\)Al\(_{15.65}\): separating the time scales of fast and ultra-slow kinetic processes in martensitic transformations. Appl. Phys. Lett. 99(1), 011906 (2011). doi:10.1063/1.3609239

    Article  ADS  Google Scholar 

  10. M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, M. Stipcich, Avalanche criticality in the martensitic transition of Cu\(_{67.64}\)Zn\(_{16.71}\)Al\(_{15.65}\) shape-memory alloy: a calorimetric and acoustic emission study. Phys. Rev. B 81(17), 174102 (2010)

    Article  ADS  Google Scholar 

  11. J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A. Dahmen, Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 112(15), 155501 (2014)

    Article  ADS  Google Scholar 

  12. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848), 251–254 (2007). doi:10.1126/science.1143719

    Article  ADS  Google Scholar 

  13. R.M. Costello, K.L. Cruz, C. Egnatuk, D.T. Jacobs, M.C. Krivos, T.S. Louis, R.J. Urban, H. Wagner, Self-organized criticality in a bead pile. Phys. Rev. E 67(4), 041304 (2003)

    Article  ADS  Google Scholar 

  14. A. Clauset, C. Shalizi, M. Newman, Power-law distributions in empirical data. Siam rev. 51(4), 661–703 (2009). doi:10.1137/070710111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Virkar, A. Clauset, Power-law distributions in binned empirical data. Ann. Appl. Stat. 1, 89–119 (2014). doi:10.1214/13-aoas710

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Ding, T. Lookman, Z. Zhao, A. Saxena, J. Sun, E.K.H. Salje, Dynamically strained ferroelastics: statistical behavior in elastic and plastic regimes. Phys. Rev. B 87(9), 094109 (2013)

    Article  ADS  Google Scholar 

  17. N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, K.A. Dahmen, Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 109(9), 095507 (2012)

    Article  ADS  Google Scholar 

  18. J. Laherrere, D. Sornette, Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. Eur. Phys. J. B 2(4), 525–539 (1998). doi:10.1007/s100510050276

    Article  ADS  Google Scholar 

  19. M.J. Aschwanden, Self-Organized Criticality Systems (Open Academic Press, Berlin, 2013)

    MATH  Google Scholar 

  20. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A 38(1), 364–374 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F.-J. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Driving-induced crossover: from classical criticality to self-organized criticality. Phys. Rev. Lett. 101(23), 230601 (2008)

    Article  Google Scholar 

  23. Z. Zhao, X. Ding, J. Sun, E.K.H. Salje, Thermal and athermal crackling noise in ferroelastic nanostructures. J. Phys. Condens. Matter 26(14), 142201 (2014)

    Article  ADS  Google Scholar 

  24. A. Travesset, R.A. White, K.A. Dahmen, Crackling noise, power spectra, and disorder-induced critical scaling. Phys. Rev. B 66(2), 024430 (2002)

    Article  ADS  Google Scholar 

  25. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102(17), 175501 (2009)

    Article  ADS  Google Scholar 

  26. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A. Dahmen, Tuned critical avalanche scaling in bulk metallic glasses. Sci. Rep. 4, 1 (2014). doi:10.1038/srep04382. http://www.nature.com/srep/2014/140317/srep04382/abs/srep04382.html#supplementary-information

  27. E. Faran, E.K.H. Salje, D. Shilo, The exploration of the effect of microstructure on crackling noise systems. Appl. Phys. Lett. 107(7), 071902 (2015). doi:10.1063/1.4928928

    Article  ADS  Google Scholar 

  28. E. Faran, H. Seiner, M. Landa, D. Shilo, The effects of microstructure on crackling noise during martensitic transformation in Cu-Al-Ni. Appl. Phys. Lett. 107(17), 171601 (2015). doi:10.1063/1.4934694

    Article  ADS  Google Scholar 

  29. V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko, The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scripta Metallurgica et Materialia 33(8), 1239–1244 (1995). doi:10.1016/0956-716X(95)00370-B

    Article  Google Scholar 

  30. R.D. James, M. Wuttig, Magnetostriction of martensite. Philos. Mag. A 77(5), 1273–1299 (1998). doi:10.1080/01418619808214252

    Article  ADS  Google Scholar 

  31. E.K. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  32. K. Bhattacharya, Microstructure of Martensite (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  33. O.Y. Kanner, D. Shilo, J. Sheng, R.D. James, Y. Ganor, Ferromagnetic shape memory flapper for remotely actuated propulsion systems. Smart Mater. Struct. 22(8), 085030 (2013)

    Article  ADS  Google Scholar 

  34. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens. Actuators A: Phys. 158(1), 149–160 (2010). doi:10.1016/j.sna.2009.12.020

    Article  Google Scholar 

  35. J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014). doi:10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  36. Y. Ganor, D. Shilo, N. Zarrouati, R.D. James, Ferromagnetic shape memory flapper. Sens. Actuators A: Phys. 150(2), 277–279 (2009). doi:10.1016/j.sna.2009.01.001

    Article  Google Scholar 

  37. E. Pagounis, A. Laptev, J. Jungwirth, M. Laufenberg, M. Fonin, Magnetomechanical properties of a high-temperature Ni-Mn-Ga magnetic shape memory actuator material. Scr. Mater. 88, 17–20 (2014). doi:10.1016/j.scriptamat.2014.06.013

    Article  Google Scholar 

  38. J.M. Stephan, E. Pagounis, M. Laufenberg, O. Paul, P. Ruther, A novel concept for strain sensing based on the ferromagnetic shape memory alloy NiMnGa. Sens. J. IEEE 11(11), 2683–2689 (2011). doi:10.1109/JSEN.2011.2157489

    Article  Google Scholar 

  39. E. Pagounis, R. Chulist, M.J. Szczerba, M. Laufenberg, High-temperature magnetic shape memory actuation in a Ni-Mn-Ga single crystal. Scr. Mater. 83, 29–32 (2014). doi:10.1016/j.scriptamat.2014.04.001

    Article  Google Scholar 

  40. R. Abeyaratne, J.K. Knowles, Evolution of Phase Transitions: A Continuum Theory, vol. v. 10 (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  41. D. Mordehai, E. Clouet, M. Fivel, M. Verdier, Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos. Mag. 88(6), 899–925 (2008). doi:10.1080/14786430801992850

    Article  ADS  Google Scholar 

  42. Y. Ezer, O. Sozinov, L. Straka, A. Soroka, N. Lanska, Magnetic Shape Memory Alloys and Specimens Thereof. European Patent Number EP2710161: Filing Date: 21.05.2012, Publication Date: 2029.2011.2012 (2012)

    Google Scholar 

  43. E. Faran, D. Shilo, The kinetic relation for twin wall motion in NiMnGa. J. Mech. Phys. Solids 59(5), 975–987 (2011). doi:10.1016/j.jmps.2011.02.009

    Article  ADS  Google Scholar 

  44. E. Faran, D. Shilo, The kinetic relation for twin wall motion in NiMnGa–part 2. J. Mech. Phys. Solids 61(3), 726–741 (2013). doi:10.1016/j.jmps.2012.11.004

    Article  ADS  Google Scholar 

  45. E. Faran, D. Shilo, Dynamics of twin boundaries in ferromagnetic shape memory alloys. Mater. Sci. Technol. 30(13a), 1545–1558 (2014). doi:10.1179/1743284714Y.0000000570

    Article  Google Scholar 

  46. R. Abeyaratne, C. Chu, R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73(2), 457–497 (1996). doi:10.1080/01418619608244394

    Article  ADS  Google Scholar 

  47. F. Hildebrand, R. Abeyaratne, An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008). doi:10.1016/j.jmps.2007.09.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. W.T. Lee, E.K.H. Salje, L. Goncalves-Ferreira, M. Daraktchiev, U. Bismayer, Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO\(_{3}\). Phys. Rev. B 73(21), 214110 (2006)

    Google Scholar 

  49. D.I. Paul, W. McGehee, R.C. O’Handley, M. Richard, Ferromagnetic shape memory alloys: a theoretical approach. J. Appl. Phys. 101(12), 123917 (2007). doi:10.1063/1.2740328

    Article  ADS  Google Scholar 

  50. D.I. Paul, R.C. O’Handley, B. Peterson, Ferromagnetic shape memory alloys: theory of interactions. J. Appl. Phys. 97(10), 10M312 (2005). doi:10.1063/1.1854871

    Article  Google Scholar 

  51. M. Chmielus, K. Rolfs, R. Wimpory, W. Reimers, P. Müllner, R. Schneider, Effects of surface roughness and training on the twinning stress of Ni-Mn-Ga single crystals. Acta Mater. 58(11), 3952–3962 (2010). doi:10.1016/j.actamat.2010.03.031

    Article  Google Scholar 

  52. O. Heczko, L. Straka, H. Seiner, Different microstructures of mobile twin boundaries in 10M modulated Ni-Mn-Ga martensite. Acta Mater. 61(2), 622–631 (2013). doi:10.1016/j.actamat.2012.10.007

    Article  Google Scholar 

  53. E. Faran, D. Shilo, Multi-scale dynamics of twinning in SMA. Shape Mem. Superelasticity 1, 180–190 (2015). doi:10.1007/s40830-015-0012-5

    Article  Google Scholar 

  54. E. Faran, D. Shilo, Implications of twinning kinetics on the frequency response in NiMnGa actuators. Appl. Phys. Lett. 100(15), 151901–151904 (2012)

    Article  ADS  Google Scholar 

  55. S.A. Kibey, L.L. Wang, J.B. Liu, H.T. Johnson, H. Sehitoglu, D.D. Johnson, Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys. Rev. B 79(21), 214202 (2009)

    Article  ADS  Google Scholar 

  56. S. Kibey, H. Sehitoglu, D.D. Johnson, Energy landscape for martensitic phase transformation in shape memory NiTi. Acta Mater. 57(5), 1624–1629 (2009). doi:10.1016/j.actamat.2008.12.008

    Article  Google Scholar 

  57. F.E. Hildebrand, R. Abeyaratne, An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008). doi:10.1016/j.jmps.2007.09.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. L. Truskinovsky, A. Vainchtein, Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B 67(17), 172103 (2003)

    Article  ADS  Google Scholar 

  59. R.C. Pond, S. Celotto, Special interfaces: military transformations. Int. Mater. Rev. 48(4), 225–245 (2003). doi:10.1179/095066003225010245

    Article  Google Scholar 

  60. J.M. Howe, R.C. Pond, J.P. Hirth, The role of disconnections in phase transformations. Prog. Mater. Sci. 54(6), 47–47 (2009). doi:10.1016/j.pmatsci.2009.04.001

    Article  Google Scholar 

  61. R. Peierls, The size of a dislocation. Proc. Phys. Soc. 52(1), 34 (1940)

    Article  ADS  Google Scholar 

  62. D.I. Paul, W. McGehee, R.C. O’Handley, M. Richard, Ferromagnetic shape memory alloys: a theoretical approach. J. Appl. Phys. 101(12) (2007). doi:10.1063/1.2740328

  63. M. Chmielus, I. Glavatskyy, J.-U. Hoffmann, V.A. Chernenko, R. Schneider, P. Müllner, Influence of constraints and twinning stress on magnetic field-induced strain of magnetic shape-memory alloys. Scr. Mater. 64(9), 888–891 (2011). doi:10.1016/j.scriptamat.2011.01.025

    Article  Google Scholar 

  64. L. Straka, O. Heczko, H. Seiner, N. Lanska, J. Drahokoupil, A. Soroka, S. Fähler, H. Hänninen, A. Sozinov, Highly mobile twinned interface in 10M modulated Ni-Mn-Ga martensite: analysis beyond the tetragonal approximation of lattice. Acta Mater. 59(20), 7450–7463 (2011). doi:10.1016/j.actamat.2011.09.020

    Article  Google Scholar 

  65. O. Heczko, J. Kopeček, L. Straka, H. Seiner, Differently mobile twin boundaries and magnetic shape memory effect in 10M martensite of Ni-Mn-Ga. Mater. Res. Bull. (2013). doi:10.1016/j.materresbull.2013.04.034

  66. H. Seiner, L. Straka, O. Heczko, A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10M martensite. J. Mech. Phys. Solids 64, 198–211 (2014). doi:10.1016/j.jmps.2013.11.004

    Article  ADS  Google Scholar 

  67. Y.W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schafer, L. Schultz, J. McCord, Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90(19), 192503–192504 (2007)

    Article  ADS  Google Scholar 

  68. E. Faran, I. Benichou, S. Givli, D. Shilo, The effects of internal microstructures on barriers for twinning reorientation in Ni-Mn-Ga. J. Appl. Phys. (submitted)

    Google Scholar 

  69. R. Chulist, L. Straka, N. Lanska, A. Soroka, A. Sozinov, W. Skrotzki, Characterization of mobile type I and type II twin boundaries in 10M modulated Ni-Mn-Ga martensite by electron backscatter diffraction. Acta Mater. 61(6), 1913–1920 (2013). doi:10.1016/j.actamat.2012.12.012

    Article  Google Scholar 

  70. H. Seiner, L. Straka, O. Heczko, A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10 M martensite. J. Mech. Phys. Solids 64, 198–211 (2014). doi:10.1016/j.jmps.2013.11.004

    Article  ADS  Google Scholar 

  71. L. Dai, Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 95(11), 6957 (2004). doi:10.1063/1.1687203

    Article  ADS  Google Scholar 

  72. N. Glavatska, G. Mogylny, I. Glavatskiy, V. Gavriljuk, Temperature stability of martensite and magnetic field induced strain in Ni-Mn-Ga. Scr. Mater. 46(8), 605–610 (2002). doi:10.1016/S1359-6462(02)00019-2

    Article  Google Scholar 

  73. E.K.H. Salje, X. Ding, Z. Zhao, T. Lookman, A. Saxena, Thermally activated avalanches: jamming and the progression of needle domains. Phys. Rev. B 83(10), 104109 (2011)

    Article  ADS  Google Scholar 

  74. R.J. Harrison, E.K.H. Salje, Ferroic switching, avalanches, and the Larkin length: needle domains in LaAlO3. Appl. Phys. Lett. 99(15), 151915 (2011). doi:10.1063/1.3650475

    Article  ADS  Google Scholar 

  75. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005). doi:10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  76. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  77. D.-H. Kim, S.-B. Choe, S.-C. Shin, Direct observation of barkhausen avalanche in Co thin films. Phys. Rev. Lett. 90(8), (2003). doi:10.1103/PhysRevLett.90.087203

  78. F.-J. Pérez-Reche, M. Stipcich, E. Vives, L. Mañosa, A. Planes, M. Morin, Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: analysis at multiple length scales. Phys. Rev. B 69(6), 064101 (2004)

    Article  ADS  Google Scholar 

  79. R. Niemann, J. Baró, O. Heczko, L. Schultz, S. Fähler, E. Vives, L. Mañosa, A. Planes, Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal. Phys. Rev. B 86(21), 214101 (2012)

    Article  ADS  Google Scholar 

  80. Z. Balogh, L. Daróczi, L. Harasztosi, D. Beke, T.A. Lograsso, D.L. Schlagel, Magnetic emission during austenite-martensite transformation in Ni2MnGa shape memory alloy. Mater. Trans. 47(3), 631–634 (2006). doi:10.2320/matertrans.47.631

  81. J. Baró, S. Dixon, R.S. Edwards, Y. Fan, D.S. Keeble, L. Mañosa, A. Planes, E. Vives, Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy. Phys. Rev. B 88(17), 174108 (2013)

    Article  ADS  Google Scholar 

  82. R. Niemann, J. Kopecek, O. Heczko, J. Romberg, L. Schultz, S. Fähler, E. Vives, L. Mañosa, A. Planes, Localizing sources of acoustic emission during the martensitic transformation. Phys. Rev. B 89(21), 214118 (2014)

    Article  ADS  Google Scholar 

  83. H. Seiner, M. Landa, Non-classical austenite-martensite interfaces observed in single crystals of Cu-Al-Ni. Phase Transit. 82(11), 793–807 (2009). doi:10.1080/01411590903366160

    Article  Google Scholar 

  84. H. Seiner, P. Sedlák, M. Landa, Shape recovery mechanism observed in single crystals of Cu-Al-Ni shape memory alloy. Phase Transit. 81(6), 537–551 (2008). doi:10.1080/01411590801891616

    Article  Google Scholar 

  85. V. Novák, P. Šittner, S. Ignacová, T. Černoch, Transformation behavior of prism shaped shape memory alloy single crystals. Mater. Sci. Eng. A 438–440, 755–762 (2006). doi:10.1016/j.msea.2006.02.192

    Article  Google Scholar 

  86. K. Bhattacharya, Microstructure of Martensite: Why it Forms and how it Gives Rise to the Shape-memory Effect. OUP Oxford (2003)

    Google Scholar 

  87. T.W. Shield, Orientation dependence of the pseudoelastic behavior of single crystals of Cu-Al-Ni in tension. J. Mech. Phys. Solids 43(6), 869–895 (1995). doi:10.1016/0022-5096(95)00011-7

    Article  ADS  Google Scholar 

  88. C. Chu, R.D. James analysis of microstructures in Cu-14.0%Al-3.9%Ni by Energy Minimization. J Phys IV France 05(C8), C8-143-C148-149 (1995)

    Google Scholar 

  89. H. Seiner, O. Glatz, M. Landa, Interfacial microstructures in martensitic transitions: from optical observations to mathematical modeling. Int. J. Multiscale Comput. Eng. 7(5), 445–456 (2009). doi:10.1615/IntJMultCompEng.v7.i5.60

    Article  Google Scholar 

  90. J.M. Ball, K. Koumatos, H. Seiner, Nucleation of austenite in mechanically stabilized martensite by localized heating. J. Alloys Compd. 577 Suppl. 1, S37–S42 (2013). doi:10.1016/j.jallcom.2011.11.070

    Article  Google Scholar 

  91. M. Landa, V. Novak, M. Blahacek, P. Sittner, Transformation processes in shape memory alloys based on monitoring acoustic emission activity. J. Acoust. Emiss. 20, 163–171 (2002)

    Google Scholar 

  92. L. Carrillo, L. Mañosa, J. Ortín, A. Planes, E. Vives, Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions. Phys. Rev. Lett. 81(9), 1889–1892 (1998)

    Article  ADS  Google Scholar 

  93. F.-J. Pérez-Reche, B. Tadić, L. Mañosa, A. Planes, E. Vives, Driving rate effects in avalanche-mediated first-order phase transitions. Phys. Rev. Lett. 93(19), 195701 (2004)

    Article  ADS  Google Scholar 

  94. J.A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 1243–1281 (1995). doi:10.1016/0022-5096(95)00024-D

    Article  ADS  Google Scholar 

  95. J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45(2), 683–700 (1997). doi:10.1016/S1359-6454(96)00189-9

    Article  Google Scholar 

  96. K. Kim, S. Daly, Martensite strain memory in the shape memory alloy Nickel-Titanium under mechanical cycling. Exp. Mech. 51(4), 641–652 (2011). doi:10.1007/s11340-010-9435-2

    Article  Google Scholar 

  97. Wikipedia, Corrugated fiberboard. (2015). https://en.wikipedia.org/wiki/Corrugated_fiberboard

Download references

Acknowledgments

This research was supported by the Israel Science Foundation (grant No. 1268/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilon Faran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Faran, E., Shilo, D. (2017). Microstructural Effects During Crackling Noise Phenomena. In: Salje, E., Saxena, A., Planes, A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-45612-6_9

Download citation

Publish with us

Policies and ethics