Dispersion Interaction Between Two Atoms or Molecules

Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


In this chapter, diagrammatic time-dependent perturbation theory is employed to calculate the Casimir-Polder dispersion potential between two neutral electric dipole polarisable atoms or molecules. Its computation via the minimal-coupling scheme is summarised first. Next, it is shown how the energy shift may be computed more simply by adopting the multipolar Hamiltonian in the electric dipole approximation. In this second framework the force is mediated by the exchange of two virtual photons, and the Casimir-Polder formula results on summing the contribution from twenty-four time-ordered diagrams evaluated at fourth-order of perturbation theory. The potential is obtained for oriented as well as for isotropic systems separated beyond the region of wave function overlap. Asymptotically limiting forms of the interaction energy applicable in the near-and far-zone regions are also found. The former reproduces the London dispersion formula, while the latter exhibits an inverse seventh power law due to the effects of retardation.


Diagrammatic perturbation theory Casimir-Polder potential London dispersion energy Vacuum electromagnetic field Fluctuating electric dipoles 


  1. 1.
    Göppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys Leipzig 9:273CrossRefGoogle Scholar
  2. 2.
    Casimir HBG, Polder D (1948) The influence of retardation on the London van der Waals forces. Phys Rev 73:360CrossRefGoogle Scholar
  3. 3.
    London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8CrossRefGoogle Scholar
  4. 4.
    Feynman RP (1949) The theory of positrons. Phys Rev 76:749CrossRefGoogle Scholar
  5. 5.
    Feynman RP (1949) Space-time approach to quantum electrodynamics. Phys Rev 76:769CrossRefGoogle Scholar
  6. 6.
    Schweber SS (1986) Feynman and the visualisation of space-time processes. Rev Mod Phys 58:449CrossRefGoogle Scholar
  7. 7.
    Ward JF (1965) Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory. Rev Mod Phys 37:1CrossRefGoogle Scholar
  8. 8.
    Power EA (1964) Introductory Quantum Electrodynamics. Longmans, LondonGoogle Scholar
  9. 9.
    Craig DP, Thirunamachandran T (1998) Molecular Quantum Electrodynamics. Dover, New YorkGoogle Scholar
  10. 10.
    Power EA, Thirunamachandran T (1983) Quantum electrodynamics with nonrelativistic sources. II. Maxwell fields in the vicinity of an atom. Phys Rev A 28:2663CrossRefGoogle Scholar
  11. 11.
    Salam A (1997) Maxwell field operators, the energy density, and the Poynting vector calculated using the minimal-coupling framework of molecular quantum electrodynamics in the Heisenberg picture. Phys Rev A 56:2579CrossRefGoogle Scholar
  12. 12.
    Power EA, Thirunamachandran T (1999) Time dependence of operators in minimal and multipolar nonrelativistic quantum electrodynamics. I. Electromagnetic fields in the neighbourhood of an atom. Phys Rev A 60:4927CrossRefGoogle Scholar
  13. 13.
    Alligood BW, Salam A (2007) On the application of state sequence diagrams to the calculation of the Casimir-Polder potential. Mol Phys 105:395CrossRefGoogle Scholar
  14. 14.
    Salam A (2010) Molecular Quantum Electrodynamics. John Wiley & Sons Inc, HobokenGoogle Scholar
  15. 15.
    Andrews DL, Thirunamachandran T (1977) On three-dimensional rotational averages. J Chem Phys 67:5026CrossRefGoogle Scholar
  16. 16.
    Craig DP, Power EA (1969) The asymptotic Casimir-Polder potential from second-order perturbation theory and its generalisation for anisotropic polarisabilities. Int J Quant Chem 3:903CrossRefGoogle Scholar
  17. 17.
    Power EA, Thirunamachandran T (1983) Quantum electrodynamics with nonrelativistic sources. III. Intermolecular interactions. Phys Rev A 28:2671CrossRefGoogle Scholar
  18. 18.
    Power EA, Thirunamachandran T (1993) Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states. Phys Rev A 47:2539CrossRefGoogle Scholar
  19. 19.
    Salam A (2008) Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint. Int Rev Phys Chem 27:405CrossRefGoogle Scholar
  20. 20.
    Casimir HBG (1949) Sur les forces van der Waals-London. J Chim Phys 46:407Google Scholar
  21. 21.
    Milonni PW (1994) The Quantum Vacuum. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Power EA, Thirunamachandran T (1994) Zero-point energy differences and many-body dispersion forces. Phys Rev A 50:3929CrossRefGoogle Scholar
  23. 23.
    Feinberg G, Sucher J (1970) General theory of the van der Waals interaction: a model-independent approach. Phys Rev A 2:2395CrossRefGoogle Scholar
  24. 24.
    Milonni PW (1982) Casimir forces without the vacuum radiation field. Phys Rev A 25:1315CrossRefGoogle Scholar
  25. 25.
    Milonni PW, Shih M-L (1992) Source theory of Casimir force. Phys Rev A 45:4241CrossRefGoogle Scholar
  26. 26.
    Schwinger JS, DeRaad LL Jr, Milton KA (1978) Casimir effect in dielectrics. Ann Phys 115:1 (NY)CrossRefGoogle Scholar
  27. 27.
    Spruch L, Kelsey EJ (1978) Vacuum fluctuation and retardation effects on long-range potentials. Phys Rev A 18:845CrossRefGoogle Scholar
  28. 28.
    Compagno G, Passante R, Persico F (1983) The role of the cloud of virtual photons in the shift of the ground-state energy of a hydrogen atom. Phys Lett A 98:253CrossRefGoogle Scholar
  29. 29.
    Power EA, Thirunamachandran T (1993) Casimir-Polder potential as an interaction between induced dipoles. Phys Rev A 48:4761CrossRefGoogle Scholar
  30. 30.
    Craig DP, Thirunamachandran T (1999) New approaches to chiral discrimination in coupling between molecules. Theo Chem Acc 102:112CrossRefGoogle Scholar

Copyright information

© The Author(s)  2016

Authors and Affiliations

  1. 1.Department of ChemistryWake Forest UniversityWinston-SalemUSA

Personalised recommendations