Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The concept of an inter-particle potential energy is introduced, and long- and short-range interaction regions are identified. Following the multipole series expansion of the charge density, the static coupling potential between two electronic distributions is obtained. Quantum mechanical perturbation theory is then employed to extract the electrostatic, induction and dispersion energy contributions to the total interaction energy at long-range. To account for the electromagnetic nature of forces between particles of matter, the photon is introduced within the framework of quantum electrodynamics theory. Manifestations of dispersion forces between microscopic entities and macroscopic bodies are briefly reviewed.


Inter-particle potential Quantum electrodynamics Real and virtual photons Van der Waals dispersion force Casimir-Polder energy Casimir shift 


  1. 1.
    Margenau H, Kestner NR (1969) Theory of intermolecular forces. Pergamon, OxfordGoogle Scholar
  2. 2.
    Clausius R (1857) Über die art der bewegung. Ann der Phys 100:353CrossRefGoogle Scholar
  3. 3.
    Maxwell JC (1867) On the dynamical theory of gases. Philos Trans Roy Soc London 157:49CrossRefGoogle Scholar
  4. 4.
    Boltzmann L (1872) Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitz Akad Wiss Wien 66:275Google Scholar
  5. 5.
    van der Waals JD (1873) On the continuity of the gas and liquid state. Doctoral dissertation, Leiden UniversityGoogle Scholar
  6. 6.
    Born M, Oppenheimer JR (1927) Zur quantentheorie der molekeln. Ann Phys 84:457CrossRefGoogle Scholar
  7. 7.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, New YorkGoogle Scholar
  8. 8.
    Dirac PAM (1958) The principles of quantum mechanics. Clarendon, OxfordGoogle Scholar
  9. 9.
    Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys 12:107Google Scholar
  10. 10.
    Keesom WH (1915) The second virial coefficient for rigid spherical molecules whose mutual attraction is equivalent to that of a quadruplet placed at its centre. Proc K Ned Akad Wet 18:636Google Scholar
  11. 11.
    Debye P (1920) Die van der Waalsschen Kohäsionskräfte. Phys Z 21:178Google Scholar
  12. 12.
    London F (1930) Zur Theorie und Systematik der Molekularkräfte. Z Phys 63:245CrossRefGoogle Scholar
  13. 13.
    Power EA, Thirunamachandran T (1993) Casimir-Polder potential as an interaction between induced dipoles. Phys Rev A 48:4761CrossRefGoogle Scholar
  14. 14.
    Power EA (1964) Introductory quantum electrodynamics. Longmans, LondonGoogle Scholar
  15. 15.
    Craig DP, Thirunamachandran T (1998) Molecular quantum electrodynamics. Dover, New YorkGoogle Scholar
  16. 16.
    Salam A (2010) Molecular quantum electrodynamics. Wiley, HobokenGoogle Scholar
  17. 17.
    Andrews DL (2013) Physicality of the photon. J Phys Chem Lett 4:3878CrossRefGoogle Scholar
  18. 18.
    Jackson JD (1975) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  19. 19.
    Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Andrews DL, Allcock P (2002) Optical harmonics in molecular systems. Wiley, WienheimCrossRefGoogle Scholar
  21. 21.
    Andrews DL, Bradshaw DS (2014) The role of virtual photons in nanoscale photonics. Ann der Physik 526:173CrossRefGoogle Scholar
  22. 22.
    Compagno G, Passante R, Persico F (1995) Atom-field interactions and dressed atoms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. 23.
    Lamb WE Jr, Retherford RC (1947) Fine structure of the hydrogen atom by a microwave method. Phys Rev 72:241CrossRefGoogle Scholar
  24. 24.
    Bethe HA (1947) The electromagnetic shift of energy levels. Phys Rev 72:339CrossRefGoogle Scholar
  25. 25.
    Salam A (2015) Virtual photon exchange, intermolecular interactions and optical response functions. Mol Phys 113:3645CrossRefGoogle Scholar
  26. 26.
    Schwinger JS (ed) (1958) Selected papers on quantum electrodynamics. Dover, New YorkGoogle Scholar
  27. 27.
    Healy WP (1982) Non-relativistic quantum electrodynamics. Academic Press, LondonGoogle Scholar
  28. 28.
    Casimir HBG, Polder D (1948) The influence of retardation on the London van der Waals forces. Phys Rev 73:360CrossRefGoogle Scholar
  29. 29.
    Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299CrossRefGoogle Scholar
  30. 30.
    Aub MR, Zienau S (1960) Studies on the retarded interaction between neutral atoms. I. Three-body London-van der Waals interaction between neutral atoms. Proc Roy Soc London A257:464CrossRefGoogle Scholar
  31. 31.
    Ward JF (1965) Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory. Rev Mod Phys 37:1CrossRefGoogle Scholar
  32. 32.
    Feynman RP (1949) The theory of positrons. Phys Rev 76:749CrossRefGoogle Scholar
  33. 33.
    Feynman RP (1949) Space-time approach to quantum electrodynamics. Phys Rev 76:769CrossRefGoogle Scholar
  34. 34.
    Milonni PW (1994) The quantum vacuum. Academic Press, San DiegoGoogle Scholar
  35. 35.
    Casimir HBG (1948) On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet B51:793Google Scholar
  36. 36.
    Milton KA (2004) The Casimir effect: Recent controversies and progress. J Phys A: Math Gen 37:R209CrossRefGoogle Scholar
  37. 37.
    Buhmann SY, Welsch D-G (2007) Dispersion forces in macroscopic quantum electrodynamics. Prog Quantum Electron 31:51CrossRefGoogle Scholar
  38. 38.
    Bordag M, Klimchitskaya GL, Mohideen U, Mostepanenko VM (2009) Advances in the Casimir effect. Oxford University Press, OxfordCrossRefGoogle Scholar
  39. 39.
    Babb JF (2010) Casimir effects in atomic, molecular, and optical physics. Adv At Mol Opt Phys 59:1CrossRefGoogle Scholar
  40. 40.
    Dalvit D, Milonni PW, Roberts D, da Rosa F (eds) (2011) Casimir physics, Lecture Notes in Physics, vol 834. Springer, BerlinGoogle Scholar
  41. 41.
    Lifshitz EM (1956) The molecular theory of attractive forces between solids. Sov Phys JETP 2:73Google Scholar
  42. 42.
    Schwinger JS, DeRaad LL Jr, Milton KA (1978) Casimir effect in dielectrics. Ann Phys (NY) 115:1CrossRefGoogle Scholar
  43. 43.
    Milonni PW (1982) Casimir forces without the vacuum radiation field. Phys Rev A 25:1315CrossRefGoogle Scholar
  44. 44.
    Milonni PW, Shih M-L (1992) Source theory of Casimir force. Phys Rev A 45:4241CrossRefGoogle Scholar
  45. 45.
    Buhmann SY (2012) Dispersion forces I and II. Springer, BerlinGoogle Scholar
  46. 46.
    Dzyaloshinskii IE (1957) Account of retardation in the interaction of neutral atoms. Sov Phys JETP 3:977Google Scholar
  47. 47.
    Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of van der Waals’ forces. Sov Phys Usp 4:153CrossRefGoogle Scholar
  48. 48.
    Mavroyannis C, Stephen MJ (1962) Dispersion forces. Mol Phys 5:629CrossRefGoogle Scholar
  49. 49.
    McLachlan AD (1963) Retarded dispersion forces between molecules. Proc Roy Soc London A271:387CrossRefGoogle Scholar
  50. 50.
    Boyer TH (1969) Recalculations of long-range van der Waals potentials. Phys Rev 180:19CrossRefGoogle Scholar
  51. 51.
    Feinberg G, Sucher J (1970) General theory of the van der Waals interaction: A model-independent approach. Phys Rev A 2:2395CrossRefGoogle Scholar
  52. 52.
    Au C-KE, Feinberg G (1972) Higher-multipole contributions to the retarded van der Waals potential. Phys Rev A 6:2433CrossRefGoogle Scholar
  53. 53.
    Power EA, Thirunamachandran T (1996) Dispersion interactions between atoms involving electric quadrupole polarisabilities. Phys Rev A 53:1567CrossRefGoogle Scholar
  54. 54.
    Salam A, Thirunamachandran T (1996) A new generalisation of the Casimir-Polder potential to higher electric multipole polarisabilities. J Chem Phys 104:5094CrossRefGoogle Scholar
  55. 55.
    Power EA, Thirunamachandran T (1983) Quantum electrodynamics with non-relativistic sources. II. Maxwell fields in the vicinity of a molecule. Phys Rev A 28:2663CrossRefGoogle Scholar
  56. 56.
    Power EA, Thirunamachandran T (1983) Quantum electrodynamics with non-relativistic sources. III. Intermolecular interactions. Phys Rev A 28:2671CrossRefGoogle Scholar
  57. 57.
    Thirunamachandran T (1988) Vacuum fluctuations and intermolecular interactions. Phys Scr T21:123CrossRefGoogle Scholar
  58. 58.
    Salam A (2008) Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint. Int Rev Phys Chem 27:405CrossRefGoogle Scholar
  59. 59.
    Power EA, Thirunamachandran T (1994) Zero-point energy differences and many-body dispersion forces. Phys Rev A 50:3929CrossRefGoogle Scholar
  60. 60.
    Spruch L, Kelsey EJ (1978) Vacuum fluctuation and retardation effects on long-range potentials. Phys Rev A 18:845CrossRefGoogle Scholar
  61. 61.
    Compagno G, Passante R, Persico F (1983) The role of the cloud of virtual photons in the shift of the ground-state energy of a hydrogen atom. Phys Lett A 98:253CrossRefGoogle Scholar
  62. 62.
    Andrews DL (ed) (2015) Fundamentals of photonics and physics. Wiley, HobokenGoogle Scholar

Copyright information

© The Author(s)  2016

Authors and Affiliations

  1. 1.Department of ChemistryWake Forest UniversityWinston-SalemUSA

Personalised recommendations