Skip to main content
  • 1267 Accesses

Abstract

The forces per unit area on each face of a cubical element are the stresses on that face. There are two types of stresses; normal stresses are perpendicular to the face of the element and shear stresses are parallel to the element face.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cauchy (1789–1857) Cauchy, A. (1822). Memoires de l’acdemie des sciences, Paris, Vol. 7, (1827), pp. See, Bulletin de la societe philomathique, Paris (1823), p. 177.

    Google Scholar 

  • Saint Venant (1797–1886) Saint-Venant, A. J. C. Barré de. (1845). Comptes Rendus, v20, p. 1765 and v21, p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl T. Herakovich .

Appendix: Solutions

Appendix: Solutions

  1. 2.8.1

    Confirm equation 2.2.

Solution

Equation (2.2) \(\Rightarrow\)

$$\sigma_{{x^{{\prime }} x^{{\prime }} }} = \sigma_{xx} \,{ \cos }^{2} \theta + \sigma_{yy} \,{ \sin }^{2} \theta + 2\tau_{xy} \,{ \sin }\,\theta \,{ \cos }\,\theta$$

Summation of forces in the \(x^{{\prime }} - x^{{\prime }}\)-direction gives:

$$\begin{aligned} & \sum {F_{{x^{{\prime }} x^{{\prime }} }} = 0} \\ & \sigma_{{x^{{\prime }} x^{{\prime }} }} A = \sigma_{xx} \,{ \cos }\,\theta \,A{ \cos }\,\theta + \sigma_{yy} \,{ \sin }\,\theta \,A{ \sin }\,\theta + \tau_{xy} \,{ \cos }\,\theta \,A{ \sin }\,\theta + \tau_{xy} A\,{ \cos }\,\theta \,{ \sin }\,\theta \\ & \sigma_{{x^{{\prime }} x^{{\prime }} }} = \sigma_{xx} \,{ \cos }^{2} \theta + \sigma_{yy} \,{ \sin }^{2} \theta + 2\tau_{xy} \,{ \cos }\theta \,A{ \sin }\theta \\ \end{aligned}$$
  1. 2.8.2

    Confirm equation 2.5.

Equation (2.5) \(\Rightarrow\)

$$\sigma_{{x^{{\prime }} x^{{\prime }} }} = \frac{{\sigma_{xx} + \sigma_{yy} }}{2} + \frac{{\sigma_{xx} - \sigma_{yy} }}{2}{ \cos }\,2\theta + \tau_{xy} \,{ \sin }\,2\theta$$

Solution

Using the trigonometric identities in (2.2):

$$\begin{aligned} { \sin }2\theta & = 2{ \sin }\theta { \cos }\theta \\ { \sin }^{2} \theta & = \frac{{1 - { \cos }2\theta }}{2} \\ { \cos }^{2} \theta & = \frac{{1 + { \cos }2\theta }}{2} \\ \end{aligned}$$
$$\Rightarrow$$
$$\begin{aligned} \sigma_{x'x'} & = \sigma_{xx} \frac{{1 + { \cos }2\theta }}{2} + \sigma_{yy} \frac{{1 - { \cos }2\theta }}{2} + \tau_{xy} { \sin }2\theta \\ \sigma_{{x^{{\prime }} x^{{\prime }} }} & = \frac{{\sigma_{xx} + \sigma_{yy} }}{2} + \frac{{\sigma_{xx} - \sigma_{yy} }}{2}{ \cos }2\theta + \tau_{xy} { \sin }2\theta \\ \end{aligned}$$
  1. 2.8.3

    Confirm equation 2.7.

Equation (2.7) \(\Rightarrow\)

$$\tau_{{x^{{\prime }} y^{{\prime }} }} = - \left( {\frac{{\sigma_{xx} - \sigma_{yy} }}{2}} \right){ \sin }\,2\theta + \tau_{xy} \,{ \cos }\,2\theta$$

Solution

Summation of forces in the \(y^{'} - y^{'}\)-direction and using trigonometric identities gives:

$$\begin{aligned} & \sum {F_{{y^{{\prime }} y^{{\prime }} }} = 0} \quad \Rightarrow \\ & \tau_{{x^{{\prime }} y^{{\prime }} }} A = A\,{ \cos }\,\theta \,\left( {\sigma_{xx} \,{ \sin }\,\theta - \tau_{xy} \,{ \cos }\,\theta } \right) + A\,{ \sin }\,\theta \,(\tau_{xy} \,{ \sin }\,\theta - \sigma_{yy} \,{ \cos }\,\theta ) \\ \end{aligned}$$
$$\begin{aligned} \tau_{{x^{{\prime }} y^{{\prime }} }} & = (\sigma_{xx} - \sigma_{yy} )\,{ \sin }\,\theta \,{ \cos }\,\theta + \tau_{xy} \left( {{ \sin }^{2} \theta - { \cos }^{2} \theta } \right) \\ \tau_{{x^{{\prime }} y^{{\prime }} }} & = (\sigma_{xx} - \sigma_{yy} )\frac{{{ \sin }\,2\theta }}{2} + \tau_{xy} \,{ \cos }\,2\theta \\ \end{aligned}$$
  1. 2.8.4

    Confirm equation 2.9.

Equation (2.9) \(\Rightarrow\)

$${ \tan }\left( {2\theta_{P} } \right) = \frac{{2\tau_{xy} }}{{\sigma_{xx} - \sigma_{yy} }}$$

Solution

Normal stress on arbitrary plane is from (2.5) \(\Rightarrow\)

$$\sigma_{{x^{{\prime }} x^{{\prime }} }} = \frac{{\sigma_{xx} + \sigma_{yy} }}{2} + \frac{{\sigma_{xx} - \sigma_{yy} }}{2}{ \cos }\,2\theta + \tau_{xy} \,{ \sin }\,2\theta$$

Setting derivative with respect to \(\theta = 0\) for maximum and minimum \(\Rightarrow\)

$$\begin{aligned} \frac{{d\sigma_{{x^{{\prime }} x^{{\prime }} }} }}{d\theta } & = 0 = - 2\sigma_{xx} \,{ \sin }\,\theta \,{ \cos }\,\theta + 2\sigma_{yy} \,{ \sin }\,\theta \,{ \cos }\,\theta + 2\tau_{xy} \left( {{ \cos }^{2} \theta - { \sin }^{2} \theta } \right) \\ 0 & = \frac{{ - \sigma_{xx} \,{ \sin }\, 2\theta }}{2} + \frac{{\sigma_{yy} \,{ \sin }\,2\theta }}{2} + \tau_{xy} \left( {\frac{{1 + { \cos }\,2\theta }}{2} - \frac{{1 - { \cos }\,2\theta }}{2}} \right) \\ 0 & = \frac{{{ \sin }\,2\theta }}{2}\left( {\sigma_{yy} - \sigma_{xx} } \right) + \tau_{xy} \,{ \cos }\,2\theta \\ { \tan }\,2\theta & = \frac{{2\tau_{xy} }}{{\sigma_{xx} - \sigma_{yy} }} \\ \end{aligned}$$
  1. 2.8.5

    Plot the variation of normal stress on planes passing through a point if it is known that the state of stress is planar with \(\sigma_{xx} = 40,\;\sigma_{yy} = - 20,\;\tau_{xy} = 10\)

Solution

Plotting Eq. (2.2) \(\Rightarrow\)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herakovich, C.T. (2017). Stress. In: A Concise Introduction to Elastic Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-45602-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45602-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45601-0

  • Online ISBN: 978-3-319-45602-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics