Skip to main content

Stability

  • Chapter
  • First Online:
A Concise Introduction to Elastic Solids
  • 1081 Accesses

Abstract

Stability is concerned with the maximum compressive load a structure can withstand before failing in a catastrophic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bažant, Z. P., & Cedolin, L. (1991). Stability of structures. Oxford: Oxford University Press.

    Google Scholar 

  • Euler, L. (1933). Methods inveniendi lineas curvas maximi minimive proprietate gaudentes …”, Appendix I. “De curvis elasticis, Bousquet, Lausanne and Geneva, 1744 (W. A. Oldfather, C. A. Ellis, & D. M. Brown, Trans), Isis, vol. XX.

    Google Scholar 

  • Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials (4th ed.). PWS Publishing Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl T. Herakovich .

Appendix: Solutions

Appendix: Solutions

  1. 12.2.1

    Show that Eq. 12.4 is a solution to the second-order differential Eq. 12.3.

Solution

$$v^{\prime \prime} + k^{2} v = 0$$
$$v = C_{1} \sin kx + C_{2} \cos kx$$
$$\begin{aligned} v^{\prime} (x) & = C_{1} k\,\cos kx - C_{2} k\,\sin kx \\ v^{\prime \prime} (x) & = - C_{1} k^{2} \sin kx - C_{2} k^{2} \cos kx = k^{2} \left( { - C_{1} \sin kx - C_{2} \cos kx} \right) \\ \Rightarrow v^{\prime \prime} + k^{2} v & = - k^{2} \left( {C_{1} \sin kx + C_{2} \cos kx} \right) + k^{2} \left( {C_{1} \sin kx + C_{2} \cos kx} \right) = 0 \\ \end{aligned}$$
  1. 12.2.2

    Compare the critical buckling loads for a pinned-end yardstick and a pinned-end, foot-long ruler of the same material and cross-sectional area.

Solution

$$P_{cr} = \frac{{\pi^{2} EI}}{{L^{2} }}$$
$$\begin{aligned} P_{cr}^{YS} & = \frac{{\pi^{2} EI}}{{3^{2} }} = \frac{{\pi^{2} EI}}{9} \\ P_{cr}^{R} & = \frac{{\pi^{2} EI}}{{1^{2} }} = \pi^{2} EI \\ \end{aligned}$$

The critical buckling load of the ruler is 9 times that of the yardstick.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herakovich, C.T. (2017). Stability. In: A Concise Introduction to Elastic Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-45602-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45602-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45601-0

  • Online ISBN: 978-3-319-45602-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics