Skip to main content

Technology Based Strategies to Enhance the Therapeutic Ratio

  • Chapter
  • First Online:
Strategies to Enhance the Therapeutic Ratio of Radiation as a Cancer Treatment

Abstract

The general purpose of technology is to enable the accomplishment of new objectives or make current objectives easier and more attainable. In radiation oncology, the ultimate objective is to maximize tumor control while minimizing normal tissue complication (i.e., optimizing the therapeutic ratio). Advances in modern technology have continued to push the envelope in terms of maximizing the therapeutic ratio for radiation oncology patients through a variety of means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spratt DE, Diaz R, McElmurray J, Csiki I, Duggan D, Lu B, Delbeke D. Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer. Clin Nucl Med. 2010;35:237–43.

    Article  PubMed  Google Scholar 

  2. Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, Lau E, Pitman A, Ware R, MacManus M. Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys. 2010;77:1151–7.

    Article  PubMed  Google Scholar 

  3. Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys. 2001;51:923–31.

    Article  CAS  PubMed  Google Scholar 

  4. Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, Uitterhoeve ALJ, Rodrigus PTR, Kramer GWP, Bussink J, De Jaeger K, Belderbos JSA, Nowak PJCM, van Herk M, Rasch CRN. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.

    Article  PubMed  Google Scholar 

  5. Troost EGC, Schinagl DAX, Bussink J, Oyen WJG, Kaanders JHAM. Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol. 2010;96:328–34.

    Article  PubMed  Google Scholar 

  6. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, Verschakelen JA. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007;17:23–32.

    Article  PubMed  Google Scholar 

  7. Shim SS, Lee KS, Kim B-T, Chung MJ, Lee EJ, Han J, Choi JY, Kwon OJ, Shim YM, Kim S. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  8. Reinhardt MJ, Joe AY, Jaeger U, Huber A, Matthies A, Bucerius J, Roedel R, Strunk H, Bieber T, Biersack H-J, Tüting T. Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  9. Karashima R, Watanabe M, Imamura Y, Ida S, Baba Y, Iwagami S, Miyamoto Y, Sakamoto Y, Yoshida N, Baba H. Advantages of FDG-PET/CT over CT alone in the preoperative assessment of lymph node metastasis in patients with esophageal cancer. Surg Today. 2015;45:471–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mehanna H, Wong W-L, McConkey CC, Rahman JK, Robinson M, Hartley AGJ, Nutting C, Powell N, Al-Booz H, Robinson M, Junor E, Rizwanullah M, von Zeidler SV, Wieshmann H, Hulme C, Smith AF, Hall P, Dunn J. PET-CT surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med. 2016;374:1444–54.

    Article  CAS  PubMed  Google Scholar 

  11. Rankin S. PET/CT for staging and monitoring non small cell lung cancer. Cancer Imaging. 2008;8 Spec No:S27–31.

    Google Scholar 

  12. Søvik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys. 2009;73:650–8.

    Article  PubMed  Google Scholar 

  13. Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 2011;21:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol. 2006;79:249–58.

    Article  CAS  PubMed  Google Scholar 

  15. Abramyuk A, Tokalov S, Zöphel K, Koch A, Szluha Lazanyi K, Gillham C, Herrmann T, Abolmaali N. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer? Radiother Oncol. 2009;91:399–404.

    Article  PubMed  Google Scholar 

  16. Troost EGC, Bussink J, Hoffmann AL, Boerman OC, Oyen WJG, Kaanders JHAM. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med. 2010;51:866–74.

    Article  PubMed  Google Scholar 

  17. Queiroz MA, Hüllner M, Kuhn F, Huber G, Meerwein C, Kollias S, von Schulthess G, Veit-Haibach P. PET/MRI and PET/CT in follow-up of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2014;41:1066–75.

    Article  PubMed  Google Scholar 

  18. Long NM, Smith CS. Causes and imaging features of false positives and false negatives on F-PET/CT in oncologic imaging. Insights Imaging. 2011;2:679–98.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nassalski A, Kapusta M, Batsch T, Wolski D, Mockel D, Enghardt W, Moszynski M. Comparative Study of Scintillators for PET/CT Detectors. In: IEEE Nuclear Science Symposium Conference Record, 2005. 2005; 5:2823–2829.

    Google Scholar 

  20. MacDonald LR, Harrison RL, Alessio AM, Hunter WCJ, Lewellen TK, Kinahan PE. Effective count rates for PET scanners with reduced and extended axial field of view. Phys Med Biol. 2011;56:3629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park S-K, Nam K-P, Jung W-Y, Kim K-S, Shin S-K, Cho S-M, Kim H-S, Dong K-R, Park Y-S, Chung W-K, Cho J-H, Yeo H-Y. A study on the effects of an extended CT field of view (FOV) on the standardized uptake value (SUV) in a PET/CT scan using 18F-fluoro-2deoxy-D-glucose. J Korean Phys Soc. 2013;61:2091–5.

    Article  Google Scholar 

  22. Armstrong IS, Kelly MD, Williams HA, Matthews JC. Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies. EJNMMI Phys. 2014;1:99.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012;53:1716–22.

    Article  PubMed  Google Scholar 

  24. Bussink J, van Herpen CML, Kaanders JHAM, Oyen WJG. PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol. 2010;11:661–9.

    Article  PubMed  Google Scholar 

  25. Schaarschmidt BM, Heusch P, Buchbender C, Ruhlmann M, Bergmann C, Ruhlmann V, Schlamann M, Antoch G, Forsting M, Wetter A. Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:92–102.

    Article  CAS  PubMed  Google Scholar 

  26. Lee P, Kupelian P, Czernin J, Ghosh P. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer. Front Oncol. 2012;2:71.

    PubMed  PubMed Central  Google Scholar 

  27. Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med. 2012;53:1171–4.

    Article  CAS  PubMed  Google Scholar 

  28. Wuest M, Wuest F. Positron emission tomography radiotracers for imaging hypoxia. J Labelled Comp Radiopharm. 2013;56:244–50.

    Article  CAS  PubMed  Google Scholar 

  29. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14.

    Article  CAS  PubMed  Google Scholar 

  30. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, Coleman RE. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49:1928–35.

    Article  PubMed  Google Scholar 

  31. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med. 2016;57:420–30.

    Article  PubMed  Google Scholar 

  32. Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int. 2013;4:S209–19.

    PubMed  PubMed Central  Google Scholar 

  33. Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, Vinod S, Tome W. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12:429–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung N-N, Ting L-L, Hsu W-C, Lui LT, Wang P-M. Impact of magnetic resonance imaging versus CT on nasopharyngeal carcinoma: primary tumor target delineation for radiotherapy. Head Neck. 2004;26:241–6.

    Article  PubMed  Google Scholar 

  35. Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol. 2011;21:147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thoeny HC, De Keyzer F, King AD. Diffusion-weighted MR imaging in the head and neck. Radiology. 2012;263:19–32.

    Article  PubMed  Google Scholar 

  37. Cuneo KC, Chenevert TL, Ben-Josef E, Feng MU, Greenson JK, Hussain HK, Simeone DM, Schipper MJ, Anderson MA, Zalupski MM, Al-Hawary M, Galban CJ, Rehemtulla A, Feng FY, Lawrence TS, Ross BD. A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol. 2014;7:644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wahba MH, Morad MM. The role of diffusion-weighted MRI: in assessment of response to radiotherapy for prostate cancer. Egypt J Radiol Nucl Med. 2015;46:183–8.

    Article  Google Scholar 

  39. Fennessy FM, McKay RR, Beard CJ, Taplin M-E, Tempany CM. Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol. 2014;7:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fain S, Schiebler ML, McCormack DG, Parraga G. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging. 2010;32:1398–408.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kan T, Kodani K, Michimoto K, Fujii S, Ogawa T. Radiation-induced damage to microstructure of parotid gland: evaluation using high-resolution magnetic resonance imaging. Int J Radiat Oncol. 2010;77:1030–8.

    Article  Google Scholar 

  42. Knight K, Touma N, Zhu L, Duchesne G, Cox J. Implementation of daily image-guided radiation therapy using an in-room CT scanner for prostate cancer isocentre localization. J Med Imaging Radiat Oncol. 2009;53:132–8.

    Article  CAS  PubMed  Google Scholar 

  43. Chen L, Paskalev K, Xu X, Zhu J, Wang L, Price RA, Hu W, Feigenberg SJ, Horwitz EM, Pollack A, Ma CMC. Rectal dose variation during the course of image-guided radiation therapy of prostate cancer. Radiother Oncol. 2010;95:198–202.

    Article  PubMed  Google Scholar 

  44. Wong JR, Gao Z, Uematsu M, Merrick S, Machernis NP, Chen T, Cheng CW. Interfractional prostate shifts: review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys. 2008;72:1396–401.

    Article  PubMed  Google Scholar 

  45. Lin T, Ma CC. Comparative assessment of adaptive radiation therapy on partial bladder cancer treatment between CT-on-rails (CTOR) and KV cone beam CT (CBCT). Int J Radiat Oncol. 2014;90:S885.

    Article  Google Scholar 

  46. Feigenberg SJ, Paskalev K, McNeeley S, Horwitz EM, Konski A, Wang L, Ma C, Pollack A. A prospective evaluation comparing CT localization with daily ultrasound during image-guided radiation therapy for the treatment of prostate cancer. J Appl Clin Med Phys. 2007;8(3):2268.

    Article  PubMed  Google Scholar 

  47. Cavalieri R, Gay HA, Liu J, Ferreira MC, Mota HC, Sibata CH, Allison RR. Total error shift patterns for daily CT on rails image-guided radiotherapy to the prostate bed. Radiat Oncol. 2011;6:142.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li X, Quan EM, Li Y, Pan X, Zhou Y, Wang X, Du W, Kudchadker RJ, Johnson JL, Kuban DA, Lee AK, Zhang X. A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86:835–41.

    Article  PubMed  Google Scholar 

  49. Yock AD, Garden AS, Court LE, Beadle BM, Zhang L, Dong L. Anisotropic margin expansions in 6 anatomic directions for oropharyngeal image guided radiation therapy. Int J Radiat Oncol Biol Phys. 2013;87:596–601.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yock AD, Rao A, Dong L, Beadle BM, Garden AS, Kudchadker RJ, Court LE. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models. Med Phys. 2014;41:051705.

    Article  PubMed  Google Scholar 

  51. Schwartz DL, Garden AS, Shah SJ, Chronowski G, Sejpal S, Rosenthal DI, Chen Y, Zhang Y, Zhang L, Wong P-F, Garcia JA, Kian Ang K, Dong L. Adaptive radiotherapy for head and neck cancer—dosimetric results from a prospective clinical trial. Radiother Oncol. 2013;106:80–4.

    Article  PubMed  Google Scholar 

  52. Nobah A, Aldelaijan S, Devic S, Tomic N, Seuntjens J, Al-Shabanah M, Moftah B. Radiochromic film based dosimetry of image-guidance procedures on different radiotherapy modalities. J Appl Clin Med Phys. 2014;15:229–39.

    Google Scholar 

  53. Zhang T, Wang W, Li Y, Jin J, Wang S, Song Y, Liu Y. Inter- and intrafractional setup errors and baseline shifts of fiducial markers in patients with liver tumors receiving free-breathing postoperative radiation analyzed by cone-beam computed tomography. J Appl Clin Med Phys. 2014;15:4914.

    PubMed  Google Scholar 

  54. Fave X, Yang J, Carvalho L, Martin R, Pan T, Balter P, Court L. Upright cone beam CT imaging using the onboard imager. Med Phys. 2014;41:061906.

    Article  PubMed  Google Scholar 

  55. Alderliesten T, Sonke J-J, Betgen A, Honnef J, van Vliet-Vroegindeweij C, Remeijer P. Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy. Int J Radiat Oncol. 2013;85:536–42.

    Article  Google Scholar 

  56. Krengli M, Gaiano S, Mones E, Ballarè A, Beldì D, Bolchini C, Loi G. Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer. Radiat Oncol. 2009;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gierga DP, Turcotte JC, Tong LW, Chen Y-LE, DeLaney TF. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Pract Radiat Oncol. 2014;4:261–6.

    Article  PubMed  Google Scholar 

  58. Cerviño LI, Detorie N, Taylor M, Lawson JD, Harry T, Murphy KT, Mundt AJ, Jiang SB, Pawlicki TA. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012;2:54–62.

    Article  PubMed  Google Scholar 

  59. Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys. 2005;32:627–34.

    Article  PubMed  Google Scholar 

  60. Ehrhardt J, Lorenz C, editors. 4D modeling and estimation of respiratory motion for radiation therapy. Berlin: Springer; 2013.

    Google Scholar 

  61. Admiraal MA, Schuring D, Hurkmans CW. Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume. Radiother Oncol. 2008;86:55–60.

    Article  PubMed  Google Scholar 

  62. McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson N-O, Bennet AM, Fornander T, Gigante B, Jensen M-B, Peto R, Rahimi K, Taylor CW, Ewertz M. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.

    Article  PubMed  Google Scholar 

  63. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6:557–65.

    Article  PubMed  Google Scholar 

  64. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjögren I, Lagerqvist B, Blomqvist C. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol. 2012;30:380–6.

    Article  PubMed  Google Scholar 

  65. Hoogeman M, Prévost J-B, Nuyttens J, Pöll J, Levendag P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74:297–303.

    Article  PubMed  Google Scholar 

  66. Sothmann T, Blanck O, Poels K, Werner R, Gauer T. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms. Phys Med Biol. 2016;61:1677–91.

    Article  CAS  PubMed  Google Scholar 

  67. Ost P, Speleers B, De Meerleer G, De Neve W, Fonteyne V, Villeirs G, De Gersem W. Volumetric arc therapy and intensity-modulated radiotherapy for primary prostate radiotherapy with simultaneous integrated boost to intraprostatic lesion with 6 and 18 MV: a planning comparison study. Int J Radiat Oncol Biol Phys. 2011;79:920–6.

    Article  PubMed  Google Scholar 

  68. Yoo S, Wu QJ, Lee WR, Yin F-F. Radiotherapy treatment plans with RapidArc for prostate cancer involving seminal vesicles and lymph nodes. Int J Radiat Oncol Biol Phys. 2010;76:935–42.

    Article  PubMed  Google Scholar 

  69. Descovich M, Sneed PK, Barbaro NM, McDermott MW, Chuang CF, Barani IJ, Nakamura JL, Lijun M. A dosimetric comparison between Gamma Knife and CyberKnife treatment plans for trigeminal neuralgia. J Neurosurg. 2010;113(Suppl):199–206.

    PubMed  Google Scholar 

  70. Lagendijk JJW, van Vulpen M, Raaymakers BW. The development of the MRI linac system for online MRI-guided radiotherapy: a clinical update. J Intern Med. 2016;280(2):203–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva K. Das Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fried, D.V., Das, S.K. (2016). Technology Based Strategies to Enhance the Therapeutic Ratio. In: Anscher, M., Valerie, K. (eds) Strategies to Enhance the Therapeutic Ratio of Radiation as a Cancer Treatment. Springer, Cham. https://doi.org/10.1007/978-3-319-45594-5_5

Download citation

Publish with us

Policies and ethics