Skip to main content

Long-Range Dependence as a Phase Transition

  • Chapter
  • First Online:
Stochastic Processes and Long Range Dependence

Abstract

Long-range dependence in a stationary process has been understood as corresponding to a particular second-order behavior, to a particular range of the Hurst parameter, or of fractional integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • F. Avram, M.S. Taqqu, Weak convergence of sums of moving averages in the α -stable domain of attraction. Ann. Probab. 20, 483–503 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Balan, A. Jakubowski, S. Louhichi, Functional convergence of linear processes with heavy-tailed innovations. J. Theor. Probab. 27, 1–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Berman, Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat. 35, 502–516 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968)

    MATH  Google Scholar 

  • P. Billingsley, Probability and Measure, 3rd edn. (Wiley, New York, 1995)

    MATH  Google Scholar 

  • P. Billingsley, Convergence of Probability Measures, 2nd edn. (Wiley, New York, 1999)

    Book  MATH  Google Scholar 

  • R. Bradley, Equivalent mixing conditions for random fields. Ann. Probab. 21, 1921–1926 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Breuer, P. Major, Central limit theorems for non-linear functionals of Gaussian fields. J. Multivar. Anal. 13, 425–441 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Davydov, The invariance principle for stationary processes. Theor. Probab. Appl. 15, 487–498 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • L. deHaan, A. Ferreira, Extreme Value Theory: An Introduction (Springer, New York, 2006)

    Google Scholar 

  • R. Dobrushin, P. Major, Non-central limit theorems for non-linear functions of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50, 27–52 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Donsker, An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6 (1951)

    Google Scholar 

  • M. Dwass, Extremal processes. Ann. Math. Stat. 35, 1718–1725 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Fisher, L. Tippett, Limiting forms of the frequency distributions of the largest or smallest member of a sample. Proc. Camb. Philis. Soc. 24, 180–190 (1928)

    Article  MATH  Google Scholar 

  • I. Gikhman, S. Skorohod, Introduction to the Theory of Random Processes (W.B. Saunders, London, 1996)

    Google Scholar 

  • B. Gnedenko, Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • E.J. Hannan, The central limit theorem for time series regression. Stoch. Process. Appl. 9, 281–289 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Jung, T. Owada, G. Samorodnitsky, Functional central limit theorem for a class of negatively dependent heavy-tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. (2016), to appear

    Google Scholar 

  • O. Kallenberg, Foundations of Modern Probability (Springer, New York, 1997)

    MATH  Google Scholar 

  • A. Kolmogorov, Y. Rozanov, On a strong mixing condition for a stationary Gaussian process. Teoria Veroyatnostei i Primeneniya 5, 222–227 (1960)

    MathSciNet  MATH  Google Scholar 

  • J. Lamperti, On extreme order statistics. Ann. Math. Stat. 35, 1726–1737 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Louhichi, E. Rio, Functional convergence to stable Lévy motions for iterated random Lipschitz mappings. Electron. J. Probab. 16, paper 89 (2011)

    Google Scholar 

  • F. Merlevéde, M. Peligrad, On the weak invariance principles for stationary sequences under projective criteria. J. Theor. Probab. 19, 647–689 (2006)

    Article  MATH  Google Scholar 

  • F. Merlevéde, M. Peligrad, S. Utev, Recent advances in invariance principles for stationary sequences. Probab. Surv. 3, 1–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Owada, G. Samorodnitsky, Functional Central Limit Theorem for heavy tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. 43, 240–285 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Owada, G. Samorodnitsky, Maxima of long memory stationary symmetric α-stable processes, and self-similar processes with stationary max-increments. Bernnoulli 21, 1575–1599 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Peligrad, Maximum of partial sums and an invariance principle for a class of weak dependent random variables. Proc. Am. Math. Soc. 126, 1181–1189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Peligrad, S. Sang, Asymptotic properties of self-normalized linear processes with long memory. Econ. Theory 28, 548–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, The limit of a renewal reward process with heavy-tailed rewards is not a linear fractional stable motion. Bernoulli 6, 607–614 (2000)

    Google Scholar 

  • V. Pipiras, M.S. Taqqu, Decomposition of self-similar stable mixing moving averages. Probab. Theory Relat. Fields 123, 412–452 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, The structure of self-similar stable mixing moving averages. Ann. Probab. 30, 898–932 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, Dilated Fractional stable motions. J. Theor. Probab. 17, 51–84 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, Stable stationary processes related to cyclic flows. Ann. Probability 32, 2222–2260 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, Integral representations of periodic and cyclic fractional stable motions. Electron. J. Probab. 12, 181–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Pipiras, M.S. Taqqu, Identification of periodic and cyclic fractional stable motions. Ann. Inst. Henri Poincaré 44, 612–637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Resnick, Weak convergence to extremal processes. Ann. Probab. 3, 951–960 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  • S. Resnick, Adventures in Stochastic Processes (Birkhäuser, Boston, 1992)

    MATH  Google Scholar 

  • S. Resnick, M. Rubinovitch, The structure of extremal processes. Adv. Appl. Probab. 5, 287–307 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Rosenblatt, Stationary Sequences and Random Fields (Birkhauser, Boston, 1985)

    Book  MATH  Google Scholar 

  • J. RosiÅ„ski, On the structure of stationary stable processes. Ann. Probab. 23, 1163–1187 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • J. RosiÅ„ski, G. Samorodnitsky, Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab. 21, 996–1014 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Samorodnitsky, Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes. Ann. Probab. 32, 1438–1468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  • A. Skorohod, Limit theorems for stochastic processes with independent increments. Theor. Probab. Appl. 2, 137–171 (1957)

    MathSciNet  Google Scholar 

  • M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50, 53–83 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • I. Weissman, On location and scale functions of a class of limiting processes with application to extreme value theory. Ann. Probab. 3, 178–181 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Whitt, Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Applications to Queues (Springer, New York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samorodnitsky, G. (2016). Long-Range Dependence as a Phase Transition. In: Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45575-4_9

Download citation

Publish with us

Policies and ethics