Skip to main content

Automated Data Pre-processing via Meta-learning

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9893))

Included in the following conference series:


A data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. As a matter of fact, a dataset usually needs to be pre-processed. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives and non-experienced users become overwhelmed. We show that this problem can be addressed by an automated approach, leveraging ideas from meta-learning. Specifically, we consider a wide range of data pre-processing techniques and a set of data mining algorithms. For each data mining algorithm and selected dataset, we are able to predict the transformations that improve the result of the algorithm on the respective dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.

  3. 3.


  1. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Towards intelligent data analysis: the metadata challenge. In: IoTBD (2016)

    Google Scholar 

  2. Charest, M., et al.: Bridging the gap between data mining and decision support: a case-based reasoning and ontology approach. In: IDA (2008)

    Google Scholar 

  3. Crone, S.F., Lessmann, S., Stahlbock, R.: The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing. Eur. J. Oper. Res. 173(3), 781–800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning, vol. 479. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine (1996)

    Google Scholar 

  6. Guazzelli, A., Zeller, M., Lin, W.-C., Williams, G., et al.: PMML: an open standard for sharing models. R J. 1(1), 60–65 (2009)

    Google Scholar 

  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., et al.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  8. Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study. Int. J. Artif. Intell. Tools 10(4), 525–554 (2001)

    Article  MATH  Google Scholar 

  9. Kietz, J.-U., Serban, F., Fischer, S., Bernstein, A.: “Semantics Inside!” but let’s not tell the data miners: intelligent support for data mining. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 706–720. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI (1995)

    Google Scholar 

  11. Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994)

    MATH  Google Scholar 

  12. Mierswa, I.: Rapid miner. Künstliche Intelligenz (2009)

    Google Scholar 

  13. Munson, M.A.: A study on the importance of and time spent on different modeling steps. SIGKDD Explor. Newsl. 13(2), 65–71 (2012)

    Article  Google Scholar 

  14. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  15. Serban, F., Vanschoren, J., Kietz, J., Bernstein, A.: A survey of intelligent assistants for data analysis. ACM Comput. Surv. 45(3), 31 (2013)

    Article  Google Scholar 

  16. Thornton, C., Hutter, F., Hoos, H.H., et al.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: KDD (2013)

    Google Scholar 

  17. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

Download references


This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate “Information Technologies for Business Intelligence - Doctoral College” (IT4BI-DC).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Besim Bilalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R. (2016). Automated Data Pre-processing via Meta-learning. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45546-4

  • Online ISBN: 978-3-319-45547-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics