Skip to main content

Phytochemistry of Cannabis sativa L.

Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM,volume 103)

Abstract

Cannabis (Cannabis sativa, or hemp) and its constituents—in particular the cannabinoids—have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC). The plant’s behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant. Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and cannabigerol (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products. Today, more than 560 constituents have been identified in cannabis. The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer’s, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.

This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.

Keywords

  • Botany of Cannabis sativa
  • Definitions of cannabis and cannabinoids
  • Outdoor cultivation
  • Indoor cultivation
  • Propagation
  • Micropropagation
  • Chemotaxonomy
  • Biosynthesis
  • Cannabinoids from C. sativa
  • Non-cannabinoids from C. sativa
  • Analytical methods
  • HPLC
  • UPLC
  • GC/FID
  • GC/MS
  • HPTLC

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45541-9_1
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-45541-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig 12
Fig 13
Fig 14
Fig 15
Fig 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. Merlin MD (2003) Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot 57:295

    CrossRef  Google Scholar 

  2. Jiang HE, Li X, Zhao YX, Ferguson DK, Hueber F, Bera S, Wang YF, Zhao LC, Liu CJ, Li CS (2006) A new insight into Cannabis sativa (Cannabaceae) utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J Ethnopharmacol 108:414

    CrossRef  Google Scholar 

  3. Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthus B (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 C. sativa L. genotypes. Euphytica 137:339

    CAS  CrossRef  Google Scholar 

  4. Small E, Marcus D (2002) Hemp: a new crop with new uses for North America. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, VA, p 284

    Google Scholar 

  5. Doyle E, Spence AA (1995) Cannabis as a medicine? Br J Anaesth 74:359

    CAS  CrossRef  Google Scholar 

  6. Zuardi AW (2006) History of Cannabis as a medicine: a review. Braz J Psychiat 28:153

    Google Scholar 

  7. Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. Curr Drug Targets CNS Neurol Disord 8:403

    CAS  CrossRef  Google Scholar 

  8. Jarvinen T, Pate DW, Laine K (2002) Cannabinoids in the treatment of glaucoma. Pharmacol Ther 95:203

    CAS  CrossRef  Google Scholar 

  9. Slatkin NE (2007) Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting: beyond prevention of acute emesis. J Support Oncol 5:1

    CAS  Google Scholar 

  10. Viveros MP, Marco EM (2007) Cannabinoids, anxiety and depression. Recent Prog Med Plants 18:225

    CAS  Google Scholar 

  11. Liang YC, Huang CC, Hsu KS (2004) Therapeutic potential of cannabinoids in trigeminal neuralgia. Curr Drug Targets CNS Neurol Disord 3:507

    CAS  CrossRef  Google Scholar 

  12. Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515

    CAS  CrossRef  Google Scholar 

  13. Pryce G, Baker D (2005) Emerging properties of cannabinoid medicines in management of multiple sclerosis. Trends Neurosci 28:272

    CAS  CrossRef  Google Scholar 

  14. Emboden WA (1974) Cannabis, a polytypic genus. Econ Bot 28:304

    CrossRef  Google Scholar 

  15. Hillig KW (2004) A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochem Syst Ecol 32:875

    CAS  CrossRef  Google Scholar 

  16. Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52:161

    CAS  CrossRef  Google Scholar 

  17. Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Harv Univ Bot Mus Leafl 23:337

    Google Scholar 

  18. Serebriakova TY, Sizov IA (1940) Cannabinaceae Lindl. In: Vavilov NI (ed) Kulturnaya Flora SSSR, vol 5. USSR, Moscow-Leningrad, p 1

    Google Scholar 

  19. Vavilov NI, Bukinich DD (1929) Zemledel’cheskii Afghanistan. Trudy po Prikladnoi Botanike. Genetike i Selektsii 33:378

    Google Scholar 

  20. Small E (1975) American law and the species problem in Cannabis: science and semantics. Bull Narc 27:1

    CAS  Google Scholar 

  21. Small E (1975) Morphological variation of Cannabis. Can J Bot 53:978

    CrossRef  Google Scholar 

  22. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405

    CrossRef  Google Scholar 

  23. Gilmore S, Peakall R, Robertson J (2003) Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations. Forensic Sci Int 131:65

    CAS  CrossRef  Google Scholar 

  24. Sakamoto K, Shimomura K, Komeda Y, Kamada H, Satoh S (1995) A male-associated DNA sequence in a dioecious plant, C. sativa L. Plant Cell Physiol 36:1549

    CAS  Google Scholar 

  25. Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P (1999) Identification of DNA markers linked to the male sex in dioecious hemp (C. sativa L.). Theor Appl Genet 98:86

    CAS  CrossRef  Google Scholar 

  26. Flachowsky H, Schuhmann E, Weber WE, Peil A (2001) Application of AFLP for the detection of sex-specific markers in hemp. Plant Breed 120:305

    CAS  CrossRef  Google Scholar 

  27. Törjék O, Bucherna N, Kiss E, Homoki H, Finta-Korpelová Z, Bócsa I, Nagy I, Heszky LE (2002) Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127:209

    CrossRef  Google Scholar 

  28. Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in C. sativa L. Genome 48:931

    CAS  CrossRef  Google Scholar 

  29. Techen N, Chandra S, Lata H, ElSohly MA, Khan IA (2010) Genetic identification of female C. sativa plants at early developmental stage. Planta Med 16:1938

    CrossRef  CAS  Google Scholar 

  30. U.S. Department of Justice, Drug Enforcement Agency, Office of Diversion Control. Title 21, United States Code (USC) Controlled Substances Act. http://www.deadiversion.usdoj.gov/21cfr/21usc/802.htm. Accessed 23 Jun 2016

  31. Chandra S, Lata H, Khan IA, ElSohly MA (2008) Photosynthetic response of C. sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol Mol Biol Plants 14:299

    CAS  CrossRef  Google Scholar 

  32. Lata H, Chandra S, Khan IA, ElSohly MA (2009) Thidiazuron induced high frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell Dev Biol Plant 45:12

    CAS  CrossRef  Google Scholar 

  33. Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding C. sativa L. Planta Med 76:1629

    CAS  CrossRef  Google Scholar 

  34. Faisal M, Anis M (2005) An efficient in vitro method for mass propagation of Tylophora indica. Biol Plant 49:257

    CrossRef  Google Scholar 

  35. Agarwal V, Sardar PR (2006) In vitro propagation of Cassia angustifolia through leaflet and cotyledon derived calli. Biol Plant 50:118

    CrossRef  Google Scholar 

  36. Zayova E, Ivanova RV, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in egg plant (Solanum melanogena L.). Biodivers Conserv 3:1

    Google Scholar 

  37. Ducos JP, Alenton R, Reano JF, Kancnanomai C, Deshayesl A, Petiard V (2003) Agronomic performance of Coffea canephora P. trees derived from large-production in liquid medium. Euphytica 131:215

    CAS  CrossRef  Google Scholar 

  38. Magioli C, Mansur E (2005) Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Bot Bras 19:139

    CrossRef  Google Scholar 

  39. Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481

    CrossRef  Google Scholar 

  40. Chandra S, Lata H, Mehmedic Z, Khan IA, ElSohly MA (2010) Assessment of cannabinoids content in micropropagated plants of Cannabis sativa L. and their comparison with conventionally propagated plants and mother plant during developmental stages of growth. Planta Med 76:743

    CAS  CrossRef  Google Scholar 

  41. De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in Cannabis plant material. J Chromatogr B 877:4115

    CrossRef  CAS  Google Scholar 

  42. Galal AM, Slade D, Gul W, El-Alfy AT, Ferreira D, ElSohly MA (2009) Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications. Recent Pat CNS Drug Discov 4:112

    CAS  CrossRef  Google Scholar 

  43. Bócsa I, Máthé P, Hangyel L (1997) Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions. J Int Hemp Assoc 4:80

    Google Scholar 

  44. De Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in C. sativa L. Genetics 163:335

    Google Scholar 

  45. Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8:237

    CAS  CrossRef  Google Scholar 

  46. Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061

    CAS  CrossRef  Google Scholar 

  47. Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615

    CAS  CrossRef  Google Scholar 

  48. Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in C. sativa L. plants. Plant Cell Physiol 49:1767

    CAS  CrossRef  Google Scholar 

  49. Turner CE, ElSohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169

    CAS  CrossRef  Google Scholar 

  50. Ross SA, ElSohly MA (1995) Constituents of Cannabis sativa L. XXVIII. A review of the natural constituents: 1980–1994. Zagazig J Pharm Sci 4:1

    CAS  Google Scholar 

  51. ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539

    CAS  CrossRef  Google Scholar 

  52. Gaoni Y, Mechoulam R (1964) Hashish. III. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646

    CAS  CrossRef  Google Scholar 

  53. Gul W, Carvalho P, Berberich DW, Avery MA, ElSohly MA (2008) (6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]-chromen-1-yl-4-methylbenzenesulfonate. Acta Cryst E64:o1686

    Google Scholar 

  54. Ahmed SA, Ross SA, Slade D, Radwan MM, Zulfiqar F, ElSohly MA (2008) Cannabinoid ester constituents from high-potency Cannabis sativa. J Nat Prod 71:536

    CAS  CrossRef  Google Scholar 

  55. Zulfiqar F, Ross SA, Slade D, Ahmed SA, Radwan MM, Zulfiquar A, Khan IA, ElSohly MA (2012) Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Lett 53:3560

    CAS  CrossRef  Google Scholar 

  56. Radwan MM, ElSohly MA, El-Alfy AT, Ahmed SA, Slade D, Husni AS, Manly SP, Wilson L, Seale S, Cutler SJ, Ross SA (2015) Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. J Nat Prod 78:1271

    CAS  CrossRef  Google Scholar 

  57. Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA (2015) Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117:194

    CAS  CrossRef  Google Scholar 

  58. Hanuŝ L, Krejčí Z (1975) Isolation of two new cannabinoid acids from Cannabis sativa L. of Czechoslovak origin. Acta Univ Palacki Olomuc Fac Med 74:161

    Google Scholar 

  59. Hively RL, Mosher WA, Hoffman FW (1966) Isolation of trans-Δ6-tetrahydrocannabinol from marijuana. J Am Chem Soc 8:1832

    CrossRef  Google Scholar 

  60. Gaoni Y, Mechoulam R (1964). Structure and synthesis of cannabigerol, a new hashish constituent. Proc Chem Soc:82

    Google Scholar 

  61. Radwan MM, Ross SA, Slade D, Ahmed SA, Zulfiqar F, ElSohly MA (2008) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74:267

    CAS  CrossRef  Google Scholar 

  62. Radwan MM, ElSohly MA, Slade D, Ahmed SA, Ross SA (2009) Biologically active cannabinoids from high potency Cannabis sativa. J Nat Prod 72:906

    CAS  CrossRef  Google Scholar 

  63. Appendino G, Giana A, Gibbons S, Maffei M, Gnavi G, Grassi G, Sterner O (2008) A polar cannabinoid from Cannabis sativa var. Carma. Nat Prod Commun 12:1977

    Google Scholar 

  64. Pollastro F, Taglialatela-Scafati O, Allarà M, Munoz E, Di Mazo V, De Petrocellis L, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019

    CAS  CrossRef  Google Scholar 

  65. Gaoni Y, Mechoulam R (1966) Cannabichromene, a new active principle in hashish. Chem Commun 1:20

    Google Scholar 

  66. Claussen U, Von Spulak F, Korte F (1966) The chemical classification of plants—XXXI, hashish—10. Cannabichromene, a new hashish component. Tetrahedron 22:1477

    CAS  CrossRef  Google Scholar 

  67. Adams R, Hunt M, Clark JH (1940) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. I. J Am Chem Soc 62:196

    CAS  CrossRef  Google Scholar 

  68. Petrzilka T, Haefliger W, Sikemeier C (1969) Synthesis of hashish components. IV. Helv Chim Acta 52:1102

    CAS  CrossRef  Google Scholar 

  69. Shani A, Mechoulam R (1974) Cannabielsoic acids. Isolation and synthesis by a novel oxidative cyclization. Tetrahedron 30:2437

    CAS  CrossRef  Google Scholar 

  70. Yamamoto I, Gohda H, Narimatsu S, Watanabe K, Yoshimura H (1991) Cannabielsoin as a new metabolite of cannabidiol in mammals. Pharmacol Biochem Behav 40:541

    CAS  CrossRef  Google Scholar 

  71. Korte F, Sieper H (1964) Chemical classification of plants. XXIV. Hashish constituents by thin-layer chromatography. J Chromatogr 13:90

    CAS  CrossRef  Google Scholar 

  72. Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of hashish. Fortschr Chem Org Naturst 25:175

    CAS  Google Scholar 

  73. Claussen U, Von Spulak F, Korte F (1968) Hashish. XIV. Components of hashish. Tetrahedron 24:1021

    CAS  CrossRef  Google Scholar 

  74. Shoyama Y, Oku R, Yamauchi T, Nishioka I (1972) Cannabis. VI. Cannabicyclolic acid. Chem Pharm Bull 20:1927

    CAS  CrossRef  Google Scholar 

  75. Shoyama Y, Morimoto S, Nishioka I (1981) Cannabis. XIV. Two new propyl cannabinoids, cannabicyclovarin and Δ7-cis-iso-tetrahydrocannabivarin, from Thai cannabis. Chem Pharm Bull 29:3720

    CAS  CrossRef  Google Scholar 

  76. Novak J, Salemink CA (1983) Cannabis. XXVII: Synthesis of 8-, 10-, and 11-oxygenated cannabinols. J Chem Soc Perkin Trans 1:2867

    CrossRef  Google Scholar 

  77. Obata Y, Ishikawa Y (1966) Constituents of hemp plant (Cannabis sativa). III. Isolation of a Gibbs-positive compound from Japanese hemp. Agric Biol Chem 30:619

    CAS  Google Scholar 

  78. Chan WR, Magnus KE, Watson HA (1976) The structure of cannabitriol. Experientia 32:283

    CAS  CrossRef  Google Scholar 

  79. McPhail AT, ElSohly HN, Turner CE, ElSohly MA (1984) Stereochemical assignments for the two enantiomeric pairs of 9,10-dihydroxy-Δ6a(10a)-tetrahydrocannabinols. X-ray crystal structure analysis of (±)-trans-cannabitriol. J Nat Prod 47:138

    CAS  CrossRef  Google Scholar 

  80. ElSohly MA, Boeren EG, Turner CE (1978) (±)-9,10-Dihydroxy-Δ6a(10a)-tetrahydrocannabinol and (±)-8,9-dihydroxy-Δ6a(10a)-tetrahydrocannabinol: 2 new cannabinoids from Cannabis sativa L. Experientia 34:1127

    Google Scholar 

  81. Harvey DJ (1985) Examination of a 140 year old ethanolic extract of Cannabis: identification of new cannabitriol homologues and the ethyl homologue of cannabinol. In: Harvey DJ, Paton W, Hahas GG (eds) Marihuana 84: proceedings of the Oxford Symposium on Cannabis 9th International Congress of Pharmacology, 3rd Satellite Symposium on Cannabis. IRL Press, Oxford, p 23

    Google Scholar 

  82. Appendino G, Chianese G, Taglialatela-Scafati O (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18:1085

    CAS  CrossRef  Google Scholar 

  83. Ahmed SA, Ross SA, Slade D, Radwan MM, Khan IA, ElSohly MA (2008) Structure determination and absolute configuration of cannabichromanone derivatives from high potency Cannabis sativa. Tetrahedron Lett 49:6050

    CAS  CrossRef  Google Scholar 

  84. Radwan MM, ElSohly MA, Slade D, Ahmed SA, Wilson L, El-Alfy A, Khan IA, ElSohly MA (2008) Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 69:2627

    CAS  CrossRef  Google Scholar 

  85. Taglialatela-Scafati O, Pagani A, Scala F, De Petrocellis L, Di Marzo V, Grassi G, Giovanni G, Appendino G (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 11:2067

    CrossRef  CAS  Google Scholar 

  86. Pagani A, Scala F, Chianese G, Grassi G, Appendino G, Taglialatela-Scafati O (2011) Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 67:3369

    CAS  CrossRef  Google Scholar 

  87. Cheng L, Kong D, Hu G, Li H (2010) A new 9,10-dihydrophenanthrenedione from Cannabis sativa. Chem Nat Compd 46:710

    CAS  CrossRef  Google Scholar 

  88. Cheng L, Kong D, Hu G (2008) Study on hemp I. Chemical constituents from petroleum ether and n-butanol portions of the methanol extract. Chin J Pharm 39:18

    CAS  Google Scholar 

  89. Qian S, Cai G-M, He G-X, Du F-L (2009) Study of the chemical constituents of the fruits of C. sativa L. Nat Prod Res Develop 21:784

    Google Scholar 

  90. Yan X, Tang J, dos Santos PC, Nurisso A, Simões-Pires CA, Ji M, Lou H, Fan P (2015) Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J Agric Food Chem 63:10611

    CAS  CrossRef  Google Scholar 

  91. ElSohly MA, Gul W, Salem M (2008) Handbook of analytical separations, vol 6. Elsevier, New York, p 235

    Google Scholar 

  92. Hewavitharana AK, Golding G, Tempany G, King G, Holling N (2005) Quantitative GC-MS analysis of Δ(9)-tetrahydrocannabinol in fiber hemp varieties. J Anal Toxicol 29:258

    CAS  CrossRef  Google Scholar 

  93. Stambouli H, Elbouri A, Bellimam MA, Bouayoun T, El Karni N (2005) Cultivation of Cannabis sativa L. in northern Morocco. Bull Narc 57:79

    CAS  Google Scholar 

  94. Raharjo TJ, Verpoorte R (2004) Methods for the analysis of cannabinoids in biological materials: a review. Phytochem Anal 15:79

    CAS  CrossRef  Google Scholar 

  95. Hazekamp A (2007) Cannabis: extracting the medicine. PhD Thesis, Universiteit Leiden, The Netherlands

    Google Scholar 

  96. Hazekamp A, Peltenburg A, Verpoorte R (2005) Chromatographic and spectroscopic data of cannabinoids from Cannabis sativa. J Liq Chromatogr Relat Technol 28:2361

    CAS  CrossRef  Google Scholar 

  97. Gambargo V, Fare DF, Froldi R, Saligari E, Tassoni G (2002) Determination of primary active constituents in Cannabis preparations by high-resolution gas chromatography. Anal Chim Acta 468:245

    CrossRef  Google Scholar 

  98. Morita M, Ando H (1984) Analysis of hashish oil by gas chromatography/mass spectrometry. Kagaku Keisatsu Kenkyujo Hokoku Hokagaku-Hen 37:137

    CAS  Google Scholar 

  99. Brenneisen R, Egli A, ElSohly MA, Henn V, Spiess Y (1996) The effect of orally and rectally administered Δ9-tetrahydrocannabinol on spasticity. A pilot study with two patients. Int J Clin Pharmacol Ther 34:446

    CAS  Google Scholar 

  100. Hida M, Mitsi T, Minami Y, Fujimura Y (1995) Classification of hashish by pyrolysis-gas chromatography. J Anal Appl Pyro1 32:197

    Google Scholar 

  101. Ross SA, Parker M, Arafat R, Lovett K, ElSohly MA (1996) The analysis of confiscated marijuana samples for different cannabinoids using GC/FID. Am Lab 16:16

    Google Scholar 

  102. Veress T, Szántó J, Leisztner L (1988) HPLC analysis of cannabinoids using amino bonded stationary phase column. In: Kalász H, Ettre L (eds) Chromatog 87. Akadémia Kiadó, Budapest, p 481

    Google Scholar 

  103. Bosy TZ, Cole KA (2000) Consumption and quantitation of Δ9-tetrahydrocannabinol in commercially available hemp. J Anal Toxicol 24:562

    CAS  CrossRef  Google Scholar 

  104. UNODC (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations Office on Drugs and Crime, Vienna

    Google Scholar 

  105. Zoller O, Rhyn P, Zimmerli B (2000) High-performance liquid chromatographic determination of delta-9-tetrahydrocannabinol and the corresponding acid in hemp containing foods with special regard to the fluorescence properties of delta-9-tetrahydrocannabinol. J Chromatogr A 872:101

    CAS  CrossRef  Google Scholar 

  106. Ross SA, Mehmedic Z, Murphy TP, ElSohly MA (2000) GC/MS analysis of the total Δ9-THC content of both drug and fiber type Cannabis seeds. J Anal Toxicol 24:715

    CAS  CrossRef  Google Scholar 

  107. Pellegriini M, Marchei E, Pacifici R, Pichini S (2005) A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrography. J Pharm Biomed Anal 36:939

    CrossRef  CAS  Google Scholar 

  108. Kovar KA, Linder H (1991) Investigation of hashish: content uniformity of different samples by coupled HPLC/PC-analysis. Arch Pharm (Weinheim) 324:329

    CAS  CrossRef  Google Scholar 

  109. Hazekamp A, Choi YH, Verpoorte R (2004) Quantitative analysis of cannabinoids from Cannabis sativa. Chem Pharm Bull 52:718

    CAS  CrossRef  Google Scholar 

  110. Elias L, Lawrence AH (1991) The analysis of drugs of abuse. Wiley, New York

    Google Scholar 

  111. Xia L, Guo Y, Deng S (2011) Simultaneous determination of 3 cannabinoids in C sativa by silica gel chromatography-RP-HPLC. Zhongguo Yaofang 22:2557

    CAS  Google Scholar 

  112. Wang C, Yang H, Li Q, Chen X, Zhang T, Bi K (2010) RP-HPLC simultaneous determination of three cannabinoids in hemp seed oil. Yaowu Fenxi Zazhi 30:1742

    CAS  Google Scholar 

  113. Fischedick JT, Glas R, Hazekamp A, Verpoorte R (2009) A qualitative and quantitative HPTLC densitometry method for the analysis of cannabinoids in Cannabis sativa L. Phytochem Anal 20:421

    CAS  CrossRef  Google Scholar 

  114. Holland BJ, Francis PS, Tsuzuki T, Adcock JL, Barnett NW, Conlan XL (2012) Chemiluminescence detection of cannabinoids and related compounds with acidic potassium permanganate. Drug Test Anal 4:675

    CAS  CrossRef  Google Scholar 

  115. Gul W, Shahbaz W, Radwan MM, Wanas AS, Mehmedic Z, Khan IA, Sharaf MHM, ElSohly MA (2015) Determination of 11 cannabinoids in biomass and extracts of different varieties of Cannabis using high-performance liquid chromatography. J AOAC Int 98:1523

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud A. ElSohly or Mohamed M. Radwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

ElSohly, M.A., Radwan, M.M., Gul, W., Chandra, S., Galal, A. (2017). Phytochemistry of Cannabis sativa L.. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Phytocannabinoids. Progress in the Chemistry of Organic Natural Products, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-45541-9_1

Download citation