Skip to main content

Infertility and Subfertility Cofactors in Women with PCOS

  • Chapter
  • First Online:
Book cover Infertility in Women with Polycystic Ovary Syndrome
  • 1301 Accesses

Abstract

Infertility is defined as a failure to conceive after 12 months of unprotected intercourse. Due to the declining fertility with increasing age, couples in which the female partner age is older than 35 years may be considered as infertile after 6 months of unprotected intercourse. Irrespectively from a previous diagnosis of PCOS, the evaluation of infertility should focus on the couple and not solely on the female partner. In fact, even if one of the main cause of infertility include ovulatory dysfunction, some couples may be affected by tubal and uterine factors, endometriosis, male factor, and unexplained infertility. Infertility investigation is usually performed after a year of infertility, although earlier evaluation should be offered to those with known conditions related to subfertility. In women with PCOS, the main contributing factor for the infertility is anovulation, but several additional factors may play a role. This chapter discusses factors leading to anovulation in women with PCOS and additional characteristics of PCOS women that may affect their fertility potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Practice Committee of American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99:63.

    Article  Google Scholar 

  2. Wang X, et al. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril. 2003;79:577–84.

    Article  PubMed  Google Scholar 

  3. Gnoth C, et al. Time to pregnancy: results of the German prospective study and impact on the management of infertility. Hum Reprod. 2003;18:1959–66.

    Article  CAS  PubMed  Google Scholar 

  4. Gnoth C, et al. Definition and prevalence of subfertility and infertility. Hum Reprod. 2005;20:1144–7.

    Article  CAS  PubMed  Google Scholar 

  5. Evers JL. Female subfertility. Lancet. 2002;360:151–9.

    Article  PubMed  Google Scholar 

  6. WHO. Recent advances in medically assisted conception. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser. 1992;820:1–111.

    Google Scholar 

  7. Hull MG, et al. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed). 1985;291:1693–7.

    Article  CAS  Google Scholar 

  8. Templeton A, Fraser C, Thompson B. The epidemiology of infertility in Aberdeen. BMJ. 1990;301:148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya S, et al. The epidemiology of infertility in the North East of Scotland. Hum Reprod. 2009;24:3096–107.

    Article  CAS  PubMed  Google Scholar 

  10. Miller JH, et al. The pattern of infertility diagnoses in women of advanced reproductive age. Am J Obstet Gynecol. 1999;181:952–7.

    Article  CAS  PubMed  Google Scholar 

  11. McGovern PG, et al. Utility of screening for other causes of infertility in women with “known” polycystic ovary syndrome. Fertil Steril. 2007;87:442–4.

    Article  PubMed  Google Scholar 

  12. Azziz R, et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352:1223–36.

    Article  CAS  PubMed  Google Scholar 

  14. Cedars MI, et al. Long-term administration of gonadotropin-releasing hormone agonist and dexamethasone: assessment of the adrenal role in ovarian dysfunction. Fertil Steril. 1992;57:495–500.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar A, et al. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2005;62:644–9.

    Article  CAS  Google Scholar 

  16. Baskind NE, Balen AH. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2016;37:80–97.

    Article  PubMed  Google Scholar 

  17. Yildiz BO, Azziz R. The adrenal and polycystic ovary syndrome. Rev Endocr Metab Disord. 2007;8:331–42.

    Article  CAS  PubMed  Google Scholar 

  18. Baptiste CG, et al. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010;122:42–52.

    Article  CAS  PubMed  Google Scholar 

  19. Hendriks ML, et al. LH as a diagnostic criterion for polycystic ovary syndrome in patients with WHO II oligo/amenorrhoea. Reprod Biomed Online. 2008;16:765–71.

    Article  CAS  PubMed  Google Scholar 

  20. Rice S, et al. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Mullerian hormone type II receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92:1034–40.

    Article  CAS  PubMed  Google Scholar 

  21. Willis DS, et al. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab. 1998;83:3984–91.

    CAS  PubMed  Google Scholar 

  22. Hugues JN, Durnerin IC. Impact of androgens on fertility–physiological, clinical and therapeutic aspects. Reprod Biomed Online. 2005;11:570–80.

    Article  CAS  PubMed  Google Scholar 

  23. Qu J, et al. Insulin resistance directly contributes to androgenic potential within ovarian theca cells. Fertil Steril. 2009;91(5 Suppl):1990–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cupisti S, et al. Body mass index and ovarian function are associated with endocrine and metabolic abnormalities in women with hyperandrogenic syndrome. Eur J Endocrinol. 2008;158:711–9.

    Article  CAS  PubMed  Google Scholar 

  25. Doi SA. Neuroendocrine dysfunction in PCOS: a critique of recent reviews. Clin Med Res. 2008;6:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Strauss 3rd JF. Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome. Ann N Y Acad Sci. 2003;997:42–8.

    Article  PubMed  Google Scholar 

  27. Harlan WR, et al. Secular trends in body mass in the United States, 1960–1980. Am J Epidemiol. 1988;128:1065–74.

    Article  CAS  PubMed  Google Scholar 

  28. Kuczmarski RJ, et al. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA. 1994;272:205–11.

    Google Scholar 

  29. Flegal KM, et al. Prevalence and trends in obesity among US adults, 1999–2000. JAMA. 2002;288:1723–7.

    Article  PubMed  Google Scholar 

  30. Flegal KM, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.

    Article  CAS  PubMed  Google Scholar 

  31. Ford ES. Prevalence of the metabolic syndrome in US populations. Endocrinol Metab Clin North Am. 2004;33:333–50.

    Article  PubMed  Google Scholar 

  32. Hart R, Doherty DA. The potential implications of a PCOS diagnosis on a woman’s long-term health using data linkage. J Clin Endocrinol Metab. 2015;100:911–9.

    Article  CAS  PubMed  Google Scholar 

  33. Pasquali R, et al. Obesity and reproductive disorders in women. Hum Reprod Update. 2003;9:359–72.

    Article  PubMed  Google Scholar 

  34. Yildiz BO, Knochenhauer ES, Azziz R. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:162–8.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez-Blasco F, et al. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch Intern Med. 2006;166:2081–6.

    Article  PubMed  Google Scholar 

  36. Gambineri A, et al. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26:883–96.

    Article  CAS  PubMed  Google Scholar 

  37. Galtier-Dereure F, et al. Choice of stimulation in polycystic ovarian syndrome: the influence of obesity. Hum Reprod. 1997;12:88–96.

    Article  PubMed  Google Scholar 

  38. White DM, et al. Induction of ovulation with low-dose gonadotropins in polycystic ovary syndrome: an analysis of 109 pregnancies in 225 women. J Clin Endocrinol Metab. 1996;81:3821–4.

    CAS  PubMed  Google Scholar 

  39. Fedorcsak P, et al. The impact of obesity and insulin resistance on the outcome of IVF or ICSI in women with polycystic ovarian syndrome. Hum Reprod. 2001;16:1086–91.

    Article  CAS  PubMed  Google Scholar 

  40. Glass AR, et al. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45:1211–9.

    Article  CAS  PubMed  Google Scholar 

  41. Stefan N, Schick F, Haring HU. Sex hormone-binding globulin and risk of type 2 diabetes. N Engl J Med. 2009;361:2675–6. author reply 2677–8

    Article  CAS  PubMed  Google Scholar 

  42. Peter A, et al. Relationships of circulating sex hormone-binding globulin with metabolic traits in humans. Diabetes. 2010;59:3167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pasquali R, Vicennati V, and U Pagotto, Endocrine determinants of fat distribution, in Handbook of obesity, Bouchard C. Bray GA, Editor. 2003, . Marcel Dekker: New York. p. 671–692.

    Google Scholar 

  44. Kirschner MA, et al. Androgen-estrogen metabolism in women with upper body versus lower body obesity. J Clin Endocrinol Metab. 1990;70:473–9.

    Article  CAS  PubMed  Google Scholar 

  45. Simo R, et al. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. 2015;26:376–83.

    Article  CAS  PubMed  Google Scholar 

  46. de Mendonca-Louzeiro MR, Annichino-Bizzacchi JM, Benetti-Pinto CL. Android fat distribution affects some hemostatic parameters in women with polycystic ovary syndrome compared with healthy control subjects matched for age and body mass index. Fertil Steril. 2015;104:467–73.

    Article  PubMed  Google Scholar 

  47. Barber TM, et al. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65:137–45.

    Article  CAS  Google Scholar 

  48. Houjeghani S, Pourghassem Gargari B, Farzadi L. Serum leptin and ghrelin levels in women with polycystic ovary syndrome: correlation with anthropometric, metabolic, and endocrine parameters. Int J Fertil Steril. 2012;6:117–26.

    PubMed  PubMed Central  Google Scholar 

  49. Pehlivanov B, Mitkov M. Serum leptin levels correlate with clinical and biochemical indices of insulin resistance in women with polycystic ovary syndrome. Eur J Contracept Reprod Health Care. 2009;14:153–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, et al. Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J Mol Endocrinol. 2013;50:R21–37.

    Article  CAS  PubMed  Google Scholar 

  51. Mantzoros CS, Dunaif A, Flier JS. Leptin concentrations in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82:1687–91.

    CAS  PubMed  Google Scholar 

  52. Budak E, et al. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3–36 with the reproductive system. Fertil Steril. 2006;85:1563–81.

    Article  CAS  PubMed  Google Scholar 

  53. Barash IA, et al. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996;137:3144–7.

    Article  CAS  PubMed  Google Scholar 

  54. Cunningham MJ, Clifton DK, Steiner RA. Leptin’s actions on the reproductive axis: perspectives and mechanisms. Biol Reprod. 1999;60:216–22.

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell M, et al. Adipokines: implications for female fertility and obesity. Reproduction. 2005;130:583–97.

    Article  CAS  PubMed  Google Scholar 

  56. Loffler S, et al. Evidence of leptin expression in normal and polycystic human ovaries. Mol Hum Reprod. 2001;7:1143–9.

    Article  CAS  PubMed  Google Scholar 

  57. Duggal PS, et al. The in vivo and in vitro effects of exogenous leptin on ovulation in the rat. Endocrinology. 2000;141:1971–6.

    Article  CAS  PubMed  Google Scholar 

  58. Cioffi JA, et al. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med. 1996;2:585–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lin XH, et al. Leptin down-regulates gamma-ENaC expression: a novel mechanism involved in low endometrial receptivity. Fertil Steril. 2015;103:228–35. e3

    Article  CAS  PubMed  Google Scholar 

  60. Arita Y, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  CAS  PubMed  Google Scholar 

  61. Weyer C, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.

    Article  CAS  PubMed  Google Scholar 

  62. Vilarrasa N, et al. Distribution and determinants of adiponectin, resistin and ghrelin in a randomly selected healthy population. Clin Endocrinol (Oxf). 2005;63:329–35.

    Article  CAS  Google Scholar 

  63. Ardawi MS, Rouzi AA. Plasma adiponectin and insulin resistance in women with polycystic ovary syndrome. Fertil Steril. 2005;83:1708–16.

    Article  CAS  PubMed  Google Scholar 

  64. Aroda V, et al. Circulating and cellular adiponectin in polycystic ovary syndrome: relationship to glucose tolerance and insulin action. Fertil Steril. 2008;89:1200–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lagaly DV, et al. Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol Cell Endocrinol. 2008;284:38–45.

    Article  CAS  PubMed  Google Scholar 

  66. Hamed HO. Role of adiponectin and its receptor in prediction of reproductive outcome of metformin treatment in patients with polycystic ovarian syndrome. J Obstet Gynaecol Res. 2013;39:1596–603.

    Article  CAS  PubMed  Google Scholar 

  67. Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109:S135–48.

    Article  CAS  PubMed  Google Scholar 

  68. Stepto NK, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28:777–84.

    Article  CAS  PubMed  Google Scholar 

  69. Cussons AJ, et al. Cardiometabolic risk in polycystic ovary syndrome: a comparison of different approaches to defining the metabolic syndrome. Hum Reprod. 2008;23:2352–8.

    Article  PubMed  Google Scholar 

  70. Geffner ME, et al. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion. Fertil Steril. 1986;45:327–33.

    Article  CAS  PubMed  Google Scholar 

  71. Diamanti-Kandarakis E, et al. Insulin sensitivity and antiandrogenic therapy in women with polycystic ovary syndrome. Metabolism. 1995;44:525–31.

    Article  CAS  PubMed  Google Scholar 

  72. Barbieri RL, Makris A, Ryan KJ. Insulin stimulates androgen accumulation in incubations of human ovarian stroma and theca. Obstet Gynecol. 1984;64(3 Suppl):73S–80S.

    Article  CAS  PubMed  Google Scholar 

  73. Hernandez ER, et al. Insulin as a regulator of androgen biosynthesis by cultured rat ovarian cells: cellular mechanism(s) underlying physiological and pharmacological hormonal actions. Endocrinology. 1988;122:2034–43.

    Article  CAS  PubMed  Google Scholar 

  74. Adashi EY, Hsueh AJ, Yen SS. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology. 1981;108:1441–9.

    Article  CAS  PubMed  Google Scholar 

  75. Teede HJ, Stuckey BG. Polycystic ovary syndrome and abnormal glucose tolerance. Med J Aust. 2007;187:324–5.

    PubMed  Google Scholar 

  76. Nestler JE, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72:83–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lee PD, Conover CA, Powell DR. Regulation and function of insulin-like growth factor-binding protein-1. Proc Soc Exp Biol Med. 1993;204:4–29.

    Article  CAS  PubMed  Google Scholar 

  78. Ibanez L, et al. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche. J Clin Endocrinol Metab. 1997;82:2283–8.

    CAS  PubMed  Google Scholar 

  79. De Leo V, et al. Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome. J Clin Endocrinol Metab. 2000;85:1598–600.

    Article  PubMed  Google Scholar 

  80. Franks S, et al. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am. 1999;28:361–78.

    Article  CAS  PubMed  Google Scholar 

  81. Diamanti-Kandarakis E, et al. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162:193–212.

    Article  CAS  PubMed  Google Scholar 

  82. Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23.

    Article  CAS  PubMed  Google Scholar 

  83. Xu B, et al. Regulation of endometrial receptivity by the highly expressed HOXA9, HOXA11 and HOXD10 HOX-class homeobox genes. Hum Reprod. 2014;29:781–90.

    Article  CAS  PubMed  Google Scholar 

  84. Quezada S, et al. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril. 2006;85:1017–26.

    Article  CAS  PubMed  Google Scholar 

  85. Apparao KB, et al. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66:297–304.

    Article  CAS  PubMed  Google Scholar 

  86. Giudice LC. Endometrium in PCOS: implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20:235–44.

    Article  CAS  PubMed  Google Scholar 

  87. Balen AH, et al. Miscarriage rates following in-vitro fertilization are increased in women with polycystic ovaries and reduced by pituitary desensitization with buserelin. Hum Reprod. 1993;8:959–64.

    Article  CAS  PubMed  Google Scholar 

  88. Sagle M, et al. Recurrent early miscarriage and polycystic ovaries. BMJ. 1988;297:1027–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rees DA, Jenkins-Jones S, Morgan CL. Contemporary reproductive outcomes for patients with polycystic ovary syndrome: a retrospective observational study. J Clin Endocrinol Metab. 2016;101:1664–72.

    Article  PubMed  PubMed Central  Google Scholar 

  90. West S, et al. Irregular menstruation and hyperandrogenaemia in adolescence are associated with polycystic ovary syndrome and infertility in later life: northern Finland birth cohort 1986 study. Hum Reprod. 2014;29:2339–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Palomba S, et al. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21:575–92.

    Article  PubMed  Google Scholar 

  92. Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17:242–53.

    Article  CAS  PubMed  Google Scholar 

  93. Piltonen TT. Polycystic ovary syndrome: endometrial markers. Best Pract Res Clin Obstet Gynaecol. 2016;37:66–79.

    Article  PubMed  Google Scholar 

  94. Gonzalez D, et al. Loss of WT1 expression in the endometrium of infertile PCOS patients: a hyperandrogenic effect? J Clin Endocrinol Metab. 2012;97:957–66.

    Article  CAS  PubMed  Google Scholar 

  95. Baracat MC, et al. Systematic review of cell adhesion molecules and estrogen receptor expression in the endometrium of patients with polycystic ovary syndrome. Int J Gynaecol Obstet. 2015;129:1–4.

    Article  CAS  PubMed  Google Scholar 

  96. Lopes IM, et al. Endometrium in women with polycystic ovary syndrome during the window of implantation. Rev Assoc Med Bras. 2011;57:702–9.

    Article  PubMed  Google Scholar 

  97. Ludwig M, et al. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod. 1999;14:354–8.

    Article  CAS  PubMed  Google Scholar 

  98. Boomsma CM, Fauser BC, Macklon NS. Pregnancy complications in women with polycystic ovary syndrome. Semin Reprod Med. 2008;26:72–84.

    Article  PubMed  Google Scholar 

  99. Heijnen EM, et al. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12:13–21.

    Article  CAS  PubMed  Google Scholar 

  100. Sahu B, et al. Comparison of oocyte quality and intracytoplasmic sperm injection outcome in women with isolated polycystic ovaries or polycystic ovarian syndrome. Arch Gynecol Obstet. 2008;277:239–44.

    Article  PubMed  Google Scholar 

  101. Mulders AG, et al. IVF outcome in anovulatory infertility (WHO group 2)–including polycystic ovary syndrome–following previous unsuccessful ovulation induction. Reprod Biomed Online. 2003;7:50–8.

    Article  PubMed  Google Scholar 

  102. Sengoku K, et al. The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome. Hum Reprod. 1997;12:474–7.

    Article  CAS  PubMed  Google Scholar 

  103. Kenigsberg S, et al. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients. Mol Hum Reprod. 2009;15:89–103.

    Article  CAS  PubMed  Google Scholar 

  104. Kwon H, et al. mRNA expression pattern of insulin-like growth factor components of granulosa cells and cumulus cells in women with and without polycystic ovary syndrome according to oocyte maturity. Fertil Steril. 2010;94:2417–20.

    Article  CAS  PubMed  Google Scholar 

  105. Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26:53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007;8:127–41.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wood JR, et al. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92:705–13.

    Article  CAS  PubMed  Google Scholar 

  108. Franks S, Roberts R, Hardy K. Gonadotrophin regimens and oocyte quality in women with polycystic ovaries. Reprod Biomed Online. 2003;6:181–4.

    Article  CAS  PubMed  Google Scholar 

  109. Huang Y, et al. Impaired oocyte quality induced by dehydroepiandrosterone is partially rescued by metformin treatment. PLoS One. 2015;10:e0122370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kdous M, et al. Oocyte and embryo quality and outcome of ICSI cycles in patients with polycystic ovary syndrome (PCOS) versus normo-ovulatory. J Gynecol Obstet Biol Reprod (Paris). 2009;38:133–43.

    Article  CAS  Google Scholar 

  111. Sermondade N, et al. Impact of polycystic ovary syndrome on oocyte and embryo quality. Gynecol Obstet Fertil. 2013;41:27–30.

    Article  CAS  PubMed  Google Scholar 

  112. Sigala J, et al. Is polycystic ovarian morphology related to a poor oocyte quality after controlled ovarian hyperstimulation for intracytoplasmic sperm injection? Results from a prospective, comparative study. Fertil Steril. 2015;103:112–8.

    Article  PubMed  Google Scholar 

  113. Bouillon R, et al. Vitamin D metabolism and action. Osteoporos Int. 1998;8:S13–9.

    Article  CAS  PubMed  Google Scholar 

  114. Wagner CL, et al. Vitamin D and its role during pregnancy in attaining optimal health of mother and fetus. Nutrients. 2012;4:208–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2012;77:343–50.

    Article  CAS  Google Scholar 

  116. Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011;31:48–54.

    Article  CAS  PubMed  Google Scholar 

  117. de Groot PC, et al. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:495–500.

    Article  PubMed  Google Scholar 

  118. Khanna R, Wu X, Shen B. Low levels of vitamin D are common in patients with ileal pouches irrespective of pouch inflammation. J Crohns Colitis. 2013;7:525–33.

    Article  PubMed  Google Scholar 

  119. Gallea M, et al. Insulin and body weight but not hyperandrogenism seem involved in seasonal serum 25-OH-vitamin D3 levels in subjects affected by PCOS. Gynecol Endocrinol. 2014;30:739–45.

    Article  CAS  PubMed  Google Scholar 

  120. Wehr E, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol. 2009;161:575–82.

    Article  CAS  PubMed  Google Scholar 

  121. Hahn S, et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2006;114:577–83.

    Article  CAS  PubMed  Google Scholar 

  122. Ngo DT, et al. Determinants of insulin responsiveness in young women: impact of polycystic ovarian syndrome, nitric oxide, and vitamin D. Nitric Oxide. 2011;25:326–30.

    Article  CAS  PubMed  Google Scholar 

  123. He C, et al. Serum vitamin D levels and polycystic ovary syndrome: a systematic review and meta-analysis. Nutrients. 2015;7:4555–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zadeh-Vakili A, et al. Genetic polymorphism of vitamin D receptor gene affects the phenotype of PCOS. Gene. 2013;515:193–6.

    Article  CAS  PubMed  Google Scholar 

  125. Rudick B, et al. Characterizing the influence of vitamin D levels on IVF outcomes. Hum Reprod. 2012;27:3321–7.

    Article  CAS  PubMed  Google Scholar 

  126. Ozkan S, et al. Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril. 2010;94:1314–9.

    Google Scholar 

  127. Rudick BJ, et al. Influence of vitamin D levels on in vitro fertilization outcomes in donor-recipient cycles. Fertil Steril. 2014;101:447–52.

    Article  CAS  PubMed  Google Scholar 

  128. Estes SJ, et al. A proteomic analysis of IVF follicular fluid in women ≤32 years old. Fertil Steril. 2009;92:1569–78.

    Article  CAS  PubMed  Google Scholar 

  129. Irani M, Merhi Z. Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review. Fertil Steril. 2014;102:460–8. e3

    Article  CAS  PubMed  Google Scholar 

  130. Pal L, et al. Vitamin D status relates to reproductive outcome in women with polycystic ovary syndrome: secondary analysis of a multicenter randomized controlled trial. J Clin Endocrinol Metab. 2016;101:3027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Asadi M, et al. Vitamin D improves endometrial thickness in PCOS women who need intrauterine insemination: a randomized double-blind placebo-controlled trial. Arch Gynecol Obstet. 2014;289:865–70.

    Article  CAS  PubMed  Google Scholar 

  132. Selimoglu H, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest. 2010;33:234–8.

    Article  CAS  PubMed  Google Scholar 

  133. Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res. 2012;32:195–201.

    Article  CAS  PubMed  Google Scholar 

  134. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile female: a committee opinion. Fertil Steril. 2015;103:e44–50.

    Article  Google Scholar 

  135. Singh KB, Patel YC, Wortsman J. Coexistence of polycystic ovary syndrome and pelvic endometriosis. Obstet Gynecol. 1989;74:650–2.

    CAS  PubMed  Google Scholar 

  136. Wise LA, et al. Polycystic ovary syndrome and risk of uterine leiomyomata. Fertil Steril. 2007;87:1108–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Togas Tulandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shavit, T., Tulandi, T. (2018). Infertility and Subfertility Cofactors in Women with PCOS. In: Palomba, S. (eds) Infertility in Women with Polycystic Ovary Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-45534-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45534-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45533-4

  • Online ISBN: 978-3-319-45534-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics