Skip to main content

Examples of Recent Crystal Development

  • Chapter
  • First Online:
Inorganic Scintillators for Detector Systems

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

Several examples of recent scintillator development are given in this chapter. They have been chosen in different areas of application to illustrate the common strategies, but also the differences in the approach. Lead tungstate illustrates particularly well how large and very challenging fundamental research projects are instrumental to pushing the limits of detector performances to meet an ambitious scientific goal. On the other hand, new halides and mixed crystals are materials to be used mainly in commercial systems like security and medical imaging devices. It is therefore constrained not only by technical considerations but also by a severe competition environment, as any new commercial product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CMS Technical Proposal (1994) CERN/LHCC 94-38, December 1994

    Google Scholar 

  2. Adeva B, Aguilar-Benitez M, Akhari H et al (1990) The construction of L3 experiment. Nucl Inst Methods Phys Res A289:35–100

    Article  ADS  Google Scholar 

  3. ALICE Collaboration Technical Proposal, CERN/LHCC/95-71 The PANDA Collaboration (2008) Technical Design Report for PANDA Electromagnetic calorimeter (EMC)- FAIR, 2008, GSI, Darmstadt

    Google Scholar 

  4. The CMS Collaboration (2012) A new boson with a mass of 125 GeV observed with the CMS experiment at the large Hadron Collider. Science 338:1569. doi:10.1126/science.1230816

    Article  ADS  Google Scholar 

  5. The PANDA Collaboration (2008) Technical Design Report for PANDA Electromagnetic calorimeter (EMC)- FAIR, 2008, GSI, Darmstadt

    Google Scholar 

  6. Novotny RW, Bremer D, Dormenev V (2009) The PANDA electro- magnetic calorimeter–a high-resolution detector based on PWO-II. In: Proc IEEE 10th Int Conf Inorganic Scintillators and Their Applications, Jeju, Korea, 2009, pp 7–12

    Google Scholar 

  7. Annenkov A et al (2000) Improved light yield of lead tungstate scintillators. Nucl Inst Methods Phys Res A450:71–74

    Article  ADS  Google Scholar 

  8. Kobayashi M, Usuki Y, Ishii M, Itoh M (2005) Significant increase in fast scintillation component from PbWO4 by annealing. Nucl Inst Methods Phys Res A537:312–316

    Article  ADS  Google Scholar 

  9. Korzhik M (2003) Talk at FEMC03, FZ Jülich, Germany, March 10–11, 2003

    Google Scholar 

  10. Bӧhm M, Borsevich A, Drobychev G, Hofstaetter A, Kondratiev O, Korzhik M, Luh M, Meyer B, Peigneux JP, Scharmann A (1998) Influence of Mo impurity on the spectroscopic and scintillation properties of PbWO4 crystals. Phys Status Solidi A167:243

    Article  ADS  Google Scholar 

  11. Borisevich A, Dormenev V, Houzvicka J, Korjik M, Novotny RW (2016) New start of lead tungstate crystal production for high –energy physics experiments. IEEE Trans Nucl Sci 63:569–573

    Article  ADS  Google Scholar 

  12. Towards a Roadmap for the Upgrade of the CERN&GSI Accelerator Complexes (2006) Proceedings of the LHC LUMI 2006 Workshop, Valencia, Spain, 16–20 October 2006

    Google Scholar 

  13. Kavatsyuk M, Bremer D, Dormenev V, Drexler P, Eissner T, Erni W, Guliyev E, Hennino T, Krusche B, Lewandowski B, Löhner H, Moritz M, Novotny RW, Peters K, Pouthas J, Rosier P, Steinacher M, Tambave G, Wilms A (2011) On behalf of the PANDA collaboration, performance of the prototype of the electromagnetic calorimeter for PANDA. Nucl Inst Methods Phys Res A648:77–91

    Article  ADS  Google Scholar 

  14. Schaart DR, Charbon E, Frach T, Schulz V (2016) Advances in digital SiPMs and their application in biomedical imaging. Nucl Inst Methods Phys Res A809:31–52

    Article  Google Scholar 

  15. Lecoq P, Annenkov A, Gektin A, Korzhik M, Pedrini C (2010) Inorganic scintillators for detector systems: physical principles and crystal engineering. Springer, Berlin

    Google Scholar 

  16. Annenkov A, Korzhik M, Lecoq P (2002) Lead tungstate scintillation material. Nucl Inst Methods Phys Res A490:30–50

    Article  ADS  Google Scholar 

  17. Auffray E, Augulis R, Borisevich A, Gulbinas V, Fedorov A, Korjik M, Lucchini MT, Mechinsky V, Nargėlas S, Songaila E, Tamulaitis G, Vaitkevičius A, Zazubovich S (2016) Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J Lumin. doi:10.1016/j.jlumin.2016.05.015

    Google Scholar 

  18. Gektin AV, Belsky AN, Vasil’ev AN (2014) Scintillation efficiency improvement by mixed crystal use. IEEE Trans Nucl Sci 61:262–270

    Article  ADS  Google Scholar 

  19. Gurvich AM, Katomina RV, Myagkova MG, Petrova IY, Tombak MI (1997) Energy yield of x-ray luminescence of polycrystalline luminophors. Zhurnal Prikladnoi Spektroskopii 26:75–81

    Google Scholar 

  20. Belsky AN, Krachni O, Mikhailin VV (1993) On the nature of the modification of luminescence spectra of alkaline-earth sulphides doped with cerium in the case of x-ray excitation. J Phys Condens Matter 5:9417–9422

    Article  ADS  Google Scholar 

  21. Gavrilov VV, Gektin AV, Shiran NV, Buravleva MG (1987) Exciton-like luminescence in CsI crystals. In: Scintillation materials, AUSRI of SC Institute, Kharkov, no. 20, pp 22–25 (in Russian)

    Google Scholar 

  22. Kubota S, Murakami H, Ruan(Gen) J-Z, Iwasa N, Sakuragi S, Hashimoto S (1998) The new scintillation material CsI and its application to position sensitive detectors. Nucl Inst Methods Phys Res A273:645–649

    ADS  Google Scholar 

  23. Gektin AV, Gorelov AI, Rykalin VI, Selivanov VI, Shiran NV, Vasil’chenko VG (1990) CsI-based scintillators in γ-detection systems. Nucl Inst Methods Phys Res A294:591–594

    Article  ADS  Google Scholar 

  24. Gektin A, Shiran N, Shlyahturov V, Belsky A (1995) Development of fast Scintillators on the basis of CsI doped with homological impurities. In: Proc SCINT, Delft, The Netherlands, 1995, pp 415–418

    Google Scholar 

  25. Swiderski L, Moszynski M, Nassalski A, Syntfeld-Kazuch A, Czarnacki W, Klamra W, Kozlov VA (2008) Scintillation properties of undoped CsI and CsI doped with CsBr. IEEE Trans Nucl Sci 55:1241–1245

    Article  ADS  Google Scholar 

  26. Auffray E, Baccaro S, Beckers T et al (1996) Extensive studies on CeF, crystals, a good candidate for electromagnetic calorimetry at future accelerators. Nucl Inst Methods Phys Res A383:367–390

    Article  ADS  Google Scholar 

  27. Belsky AN, Vasil’ev AN, Mikhailin VV, Gektin AV, Shiran NV, Rogalev AL, Zinin EI (1992) Time-resolved XEOL spectroscopy of new scintillators based on CsI. Rev Sci Instrum 63:806–809

    Article  ADS  Google Scholar 

  28. Belsky AN, Glukhova RA, Martin P, Mikhailin VV, Pedrini C, Vasil’ev AN (1997) VUV excitation of intrinsic luminescence of ionic crystals with complicated band structure. Simulation J Lumin 72–74:96–97

    Article  Google Scholar 

  29. Pedrini C, Belsky AN, Vasil’ev AN, Bouttet D, Dujardin C, Moine B, Martin P, Weber MJ (1994) Fluorescence properties of CeF3 and of some other cerium doped crystals and glasses under VUV and X-ray synchrotron excitation. Mat Res Soc Proc 348:225–234

    Article  Google Scholar 

  30. U.S. Pat. No. 7,084,403 General Electric Company, Scintillator compositions, and related processes and articles of manufacture A.M. Srivastava

    Google Scholar 

  31. Autrata R, Shauer P, Kvapil J, Kvapil J (1978) A single crystal of YAG-new fast scintillator in SEM. J Phys E Sci Instrum 11:707–708

    Article  ADS  Google Scholar 

  32. Baryshevski VG, Zuevski RF, Korzhik MV et al (1991) Fast scintillator YAlO3:Pr. JETP Lett 17:82–85 (in Russian)

    Google Scholar 

  33. Takagi K, Fukazawa T (1983) Cerium-activated Gd2SiO5 single crystal scintillator. Appl Phys Lett 42:43–45

    Article  ADS  Google Scholar 

  34. Melcher CL, Schweitzer JS (1992) Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci NS39:502–505

    Article  ADS  Google Scholar 

  35. Melcher L (1990) Lutetium orthosilicate single crystal scintillation detector. US Patent № 4,958,080 (1990) and № 5,025,151 (1991)

    Google Scholar 

  36. Melcher CL, Casey EM, Nutt R (2002) Manufacturing a cerium-doped lutetium oxyorthosilicate boule. Patent WO 2002068733 A1, September 6, 2002

    Google Scholar 

  37. Annenkov A, Korzhik M, Tkachev A, Lecoq P, Auffray E (2001) Production of REAlO3: Ce scintillators by Czochralski method. In: SCINT2001 conference, 16–21 September 2001 in Chamonix, France

    Google Scholar 

  38. Annenkov A, Fedorov A, Dossovitski A, Korzhik M, Lecoq P, Ligoun V, Missevitch O, Tkachev A (2004) Industrial growth of LuYAP:Ce scintillation crystals. In: Conf Abstr. 7th International Conference on Inorganic Scintillators SCINT’2003. Valencia, Spain, 8–12 September, 2003

    Google Scholar 

  39. Korzhik M, Lecoq P (2004) Physics of scintillation in REAlO3:Ce crystals In: Conf Abstr. 7th International Conference on Inorganic Scintillators SCINT’2003. Valencia, Spain, 8–12 September, 2003

    Google Scholar 

  40. Annenkov A, Fedorov A, Dossovitski A, Korzhik M, Lecoq P, Ligoun V, Missevitch O, Tkachev A (2004) Industrial growth of LuYAP:Ce scintillation crystals. In: Conf Abstr 7th International Conference on Inorganic Scintillators SCINT’2003. Valencia, Spain, 8–12 September, 2003

    Google Scholar 

  41. Fedorov A, Annenkov A, Korzhik M, Lecoq P, Missevitch O, Tkachev A (2004) Characterization of pilot batch of LuYAP crystals to be used in prototypes of small animal positron emission tomograph ClearPET. In: Conf Abstr 7th International Conference on Inorganic Scintillators SCINT’2003. Valencia, Spain, 8–12 September, 2003

    Google Scholar 

  42. Korzhik M, Annenkov A, Khruchinski A, Fedorov A, Kuten S, Lecoq P, Ligoun V, Missevitch (2004) (Lux-Y1-x)AP:Ce scintillation crystals. In: IEEE’2003 Nucl. Sci. Symp. Conf. Rec., NSS27-3, Portland, Oregon, USA, October 19–25, 2003

    Google Scholar 

  43. Belsky AN, Auffray E, Lecoq P, Dujardin C, Garnier N, Candibano H, Pedrini C, Petrosyan AG (2001) Progress in the development of LuAlO3-based scintillators. IEEE Trans Nucl Sci 48:1095–1100

    Article  ADS  Google Scholar 

  44. Chai BHT, Chai DY, Randall A. Method of enhancing performance of doped scintillation crystals US Patent № 7,397,034 B2 (2004)

    Google Scholar 

  45. Chai B (2007) Method of Enhancing performance of cerium doped lutetium yttrium orthosilicate crystals and crystals produced thereby. U.S. Patent 7166845 B1, January 23, 2007

    Google Scholar 

  46. Chen J, Zhang L, Zhu R-Y (2005) Large size LYSO crystals for future high energy physics experiments. IEEE Trans Nucl Sci 52:3133–3140

    Article  ADS  Google Scholar 

  47. Sidletskiy O, Bondar V, Grinyov B, Kurtsev D, Baumer V, Belikov K, Katrunov K, Starzhinsky N, Tarasenko O, Tarasov V, Zelenskaya O (2010) Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO:Ce crystals. J Cryst Growth 312:601–606

    Article  ADS  Google Scholar 

  48. Sidletskiy O, Belsky A, Gektin A, Neicheva S, Kurtsev D, Kononets V, Dujardin C, Lebbou K, Zelenskaya O, Tarasov V, Belikov K, Grinyov B (2012) Structure–property correlations in a Ce-doped (Lu, Gd)2SiO5:Ce scintillator. Cryst Growth Design 12:4411–4416

    Article  Google Scholar 

  49. Chani VI (2003) Effect of cation radii on the formation of complex oxide crystals. J Ceramic Proc Res 4:67–70

    Google Scholar 

  50. Sidletskiy O, Gektin A, Belsky A (2014) Light-yield improvement trends in mixed scintillation crystals. Phys Status Solidi (a) 211:2384–2387

    Article  Google Scholar 

  51. Petrosyan AG, Ovanesyan KL, Shirinyan GO, Butaeva TI, Pedrini C, Dujardin BA (2000) Growth and light yield performance of dense Ce3 + -doped (Lu, Y)AlO3 solid solution crystals. J Cryst Growth 211:252–256

    Article  ADS  Google Scholar 

  52. Yoshikawa A, Kamada K, Fujimoto Y, Kurosawa S, Yokota Y, Pejchal J, Futami Y, Nikl M (2000) Crystal chemistry of cerium doped {Gd,RE}3[Ga,Al,M’]2[Ga,Al,M”]3O12 single crystalline scintillators and their performance. In : Abstracts of the 8th International Conference on Luminescense Transormers of Ionizing Radiation, Halle (Saale), Germany, September 10-14, 2012. Rep. O-Wed-06

    Google Scholar 

  53. Kamada K, Endo T, Tsutumi K, Yanagida T, Fujimoto Y, Fukabori A, Yoshikawa A, Pejchal J, Nikl M (2011) Composition engineering in cerium-doped (Lu, Gd)3(Ga, Al)5O12 single-crystal scintillators. Cryst Growth Des 11:4484–4490

    Article  Google Scholar 

  54. Odieglo JM (2012) Luminescence and Energy Transfer in Garnet Scintillators. PhD Thesis, University of Utrecht, The Netherlands, 2012, ISBN: 978-94-6191-402-6

    Google Scholar 

  55. Mares J, Nikl M, Mihokova E, Beitlerova A, Vedda A, D’Ambrosio C (2008) Scintillation response comparison among Ce-doped aluminum garnets, perovskites and orthosilicates. IEEE Trans Nucl Sci 55(3):1142–1147

    Article  ADS  Google Scholar 

  56. Fasoli M, Vedda A, Nikl M, Jiang C, Uberuaga BP, Andersson DA, McClellan KJ, Stanek CR (2011) Band-gap engineering for removing shallow traps in rare-earth Lu3 Al5 O12 garnet scintillators using Ga3+ doping. Phys Rev B84: 081102(R)

    Google Scholar 

  57. Yadav SK, Uberuaga BP, Nikl M, Jiang C, Stanek CR (2011) Band-gap and band-edge engineering of multicomponent garnet scintillators: a first-principles study. Phys Rev B 84:081102/1–081102/4

    ADS  Google Scholar 

  58. Warlimont H (ed) (1974) Order-disorder transformations in alloys. Berlin/Heidelberg/NewYork. 1974, 550 p

    Google Scholar 

  59. Katsnelson AA, Silonov VM, Khwaja FA (1979) Electronic theory of short-range order in alloys using the pseudopotential approximation and its comparison with experiments. Phys Stat Sol (b) 91:11

    Article  ADS  Google Scholar 

  60. Ueda J, Kuroishi K, Tanabe S (2014) Yellow persistent luminescence in Ce3 + –Cr3 + -codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation. Appl Phys Express 7:062201

    Article  ADS  Google Scholar 

  61. Jian X, Tanabe S, Sontakke AD, Ueda J (2015) Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows. Appl Phys Lett 107:081903

    Article  ADS  Google Scholar 

  62. Kondratiev DM, Korzhik MV, Fedorov AA, Pavlenko AV (1996) Scintillation in cerium-activited gadolinium based crystals. Phys Status Solidi (b) 197:251–256

    Article  ADS  Google Scholar 

  63. Onderesinova Z, Kuchera M, Hanus M, Nikl M (2015) Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in codoped LuuAG:Ce, Gd garnet scintillators. J Lumin 167:106–113

    Article  Google Scholar 

  64. Wu Y, Ding D, Pan S, Yang F, Ren G (2011) The influence of Sc/Lu ratio on the phase transformation and luminescence of cerium-doped lutetium scandium orthoborate solid solutions. J Alloys Compd 509:366–371

    Article  Google Scholar 

  65. Spassky DA, Levushkina VS, Mikhailin VV, Tretyakova MS, Zadneprovski BI (2012) Luminescent properties of LuxY1-xBO3:RE3+ (RE=Eu, Ce) solid solutions. Presented at the 3d Int. Conf. Scintillation Materials Engineering and Radiation Technologies, Dubna, Russia, Nov. 19–23, 2012 (in Russian)

    Google Scholar 

  66. Pankratov V, Popov A, Chernov S, Zharkouskaya A, Feldman C (2010) Mechanism of energy transfer processes between ce and Tv in laPO:Ce, Tb nanocrystals by time-resolved luminescence spectroscopy. Phys Status Solidi B247:2252–2257

    Article  ADS  Google Scholar 

  67. Spassky D, Omelkov S, Mag H, Vasil’ev A, Krutyak N, Tupitsina A, Dubovik A, Yakubovskaya A, Belski A (2014) Energy transfer in solid solutions ZnxMg(1-x)WO4. Opt Mater 36:1660–1664

    Article  ADS  Google Scholar 

  68. Kostler W, Winnacker A, Rossner W, Grabmaier BC (1993) Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3:Eu. J Phys Chem Solids 56:907–913

    Article  Google Scholar 

  69. Blasse G (1994) Scintillator materials. Chem Mater 6:1465–1475

    Article  Google Scholar 

  70. Greskhovich A et al (1992) Ceramic scintillators for advanced, medical X-ray detectors. Am Ceram Soc Bull 71:1120–1130

    Google Scholar 

  71. Miller S, Nagarkar V, Tipnis S, Shestakova I, Brecher C, Lempicki A, Lingertat H (2004) Lu2O3:Eu scintillator screen for x0rsy imasging. Proc. SPIE 5199, Penetrating Radiaion Systems and Applications 57. doi:101117/12.509912

    Google Scholar 

  72. Seeley Z, Cherepy N, Payne S (2013) Two-step sintering of Gd0.3Lu1.6Eu0.1O3 transparent ceramic scintillator. Opt Mater Express 3(7):908–912

    Article  Google Scholar 

  73. Zych E, Brecher C, Wojtowicz AJ, Lingertat H (1997) Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. J Lumin 75:193–203

    Article  Google Scholar 

  74. Cherepy N, Kuntz J, Tillotson T, Speaks D, Payne SA, Chai B (2007) Single crystal and transparent ceramic lutetium aluminum garnet scintillators. Nucl Inst Methods Phys Res A579(1):38–41

    Article  ADS  Google Scholar 

  75. Kuntz JD, Roberts JJ, Hough M, Cherepy NJ (2007) Multiple synthesis routes to transparent ceramic lutetium aluminum garnet. Scr Mater 57:960

    Article  Google Scholar 

  76. Hull G, Roberts JJ, Kuntz JD, Fisher SE, Sanner RD, Tillotson TM, Drobshoff AD, Payne SA, Cherepy NJ (2007) Ce-doped single crystal and ceramic garnets for ray detection. SPIE Optical Engineering+Applications 6706:670617

    Google Scholar 

  77. Korjik M et al (2015) Formation of high-density scintillation ceramic from LuAG:Ce+Lu2O3 powders obtained by co-precipitation method. Optical Materials 46. doi: 10.1016/j.optmat.2015.05.036

  78. Cherepy NJ, Kuntz JD, Seeley ZM, Fisher SE, Drury OB, Sturm BW, Hurst TA, Sanner RD, Roberts JJ, Payne SA (2010) Transparent ceramic scintillators for γ spectroscopy and radiography. Proc SPIE 7805:7805-01

    Article  ADS  Google Scholar 

  79. Cherepy NJ, Payne SA, Sturm BW, O’Neal SP, Seeley ZM, Drury OB, Haselhorst LK, Rupert BL, Sanner RD, Thelin PA, Fisher SE, Hawrami R, Shah KS, Burger A, Ramey JO, Boatner LA (2011) Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators. Proc SPIE 8142:81420W. doi:10.1117/12.896656

    Article  ADS  Google Scholar 

  80. Kindem J, Conwell R, Seeley ZM, Cherepy NJ, Payne SA (2011) Performance Comparison of Small GYGAG(Ce) and CsI(TI) Scintillators with PIN Detectors. In: IEEE Nuclear Science Symposium, Conf Record

    Google Scholar 

  81. Cherepy N, Seeley Z, Payne S et al (2013) Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans Nucl Sci 60(3):2330–2335. doi:10.1109/TNS.2013.2261826

    Article  ADS  Google Scholar 

  82. Cherepy N et al (2012) Fabrication of transparent ceramics using nanoparticels, US Patent 8,268,230, B2

    Google Scholar 

  83. Seeley ZM, Dai ZR, Kuntz JD, Cherepy NJ, Payne SA (2012) Phase stabilization in transparent Lu2O3: Eu ceramics by lattice expansion. Opt Mater 35:74–78

    Article  ADS  Google Scholar 

  84. Seeley Z, Cherepy N, Payne S (2013) Homogenity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J Cryst Gorwth 379:79–83

    Article  ADS  Google Scholar 

  85. Seeley ZM, Cherepy NJ, Payne SA (2014) Expanded phase stability of Gd-based garnet transparent ceramic scintillators. J Mater Res 29:2332–2337

    Article  ADS  Google Scholar 

  86. Wang Y, Baldoni G, Rhodes WH, Brecher C, Shah A, Shirwadkar U, Glodo J, Cherepy NJ, Payne SA (2012) Transparent garnet ceramic scintillators. SPIE Optical Engineering+Applications 850717–850717-8

    Google Scholar 

  87. Giaz A, Hull G, Fossati V, Cherepy N, Camera F, Blasi N, Brambilla S, Coelli S, Million B, Riboldi S (2015) Characterization of large volume scintillator materials: SrI2:Eu, CeBr3 and GYGAG:Ce for γ-rays up to 9 MeV. Nucl Inst Methods Phys Res A804:212–220

    Article  ADS  Google Scholar 

  88. Cherepy NJ, Seeley ZM, Payne SA, Swanberg EL, Beck PR, Schneberk DJ, Stone G, Perry R, Wihl B, Fisher SE, Hunter SL, Thelin PA, Thompson RR, Harvey NM, Stefanik T, Kindem J (2015) Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. SPIE Optical Engineering+Applications 95930P-–95930P-7

    Google Scholar 

  89. Cherepy NJ, Seeley ZM, Payne SA, Beck PR, Swanberg EL, Hunter S, Ahle L, Fisher SE, Melcher C, Wei H, Stefanik T, Chung Y-S, Kindem J (2014) High energy resolution transparent ceramic garnet scintillators. SPIE Optical Engineering+Applications 921302–921302-6

    Google Scholar 

  90. Beall GH (1992) Design and properties of glass-ceramics. Annu Rev Mater Sci 22:91–119

    Article  ADS  Google Scholar 

  91. Spowart AR (1976) Neutron scintillating glasses: part I. Activation by external charged particles and thermal neutrons. Nucl Inst Methods Phys Res 135:441–453

    Article  ADS  Google Scholar 

  92. Spowart AR (1977) Neutron scintillating glasses: part II. The effect of temperature on pulse height and conductivity. Nucl Inst Methods Phys Res 140:19–28

    Article  ADS  Google Scholar 

  93. Spowart AR (1978) Neutron scintillating glasses: part III. Pulse decay time measurements at room temperature. Nucl Inst Methods Phys Res 150:159–163

    Article  ADS  Google Scholar 

  94. Sain Gobain Crystals Catalogue

    Google Scholar 

  95. Pan Z, James K, Cui Y, Burger A, Cherepy N, Payne S, Mu R, Morgan S (2008) Terbium-activated lithium0lanthanum0aluminosilicate oxyfluoride scintillating glass and glass-ceramics. Nucl Inst Methods Phys Res A594:215–219

    Article  ADS  Google Scholar 

  96. Holand W, Beall GH (2012) Glass ceramics technology, Second edition, Wiley,

    Google Scholar 

  97. Deubener J (2004) Configurational entropy and crystal nucleation of silicate glasses. Phys Chem Glasses 45:61

    Google Scholar 

  98. Bliss M, Reeder PL, Weber MJ, Craig RA, Sunberg DS (1994) Relationship between microstructure and efficiency of scintillation glasses, PNL-SA-23185, April 1994

    Google Scholar 

  99. US patent 4 566 987, January 28, 1986

    Google Scholar 

  100. Borisevich A, Dormenev V, Korjik M, Kozlov D, Mechinsky V, Novotny RW (2015) Optical transmission radiation damage and recovery stimulation o DSB:Ce3+ inorganic scintillation material. J Phys Conf Ser 587:012063

    Article  ADS  Google Scholar 

  101. Auffray E, Akchurin N et al (2015) DSB:Ce3+ scintillation glass for future. J Phy Conf Ser 587:012062

    Article  ADS  Google Scholar 

  102. Novotny RW, Brinkman K-T et al (2015) Study o the stoichiometric glass and glass ceramic BaO*2SiO2:Ce (DSB:Ce) scintillation material fro calorimetry. Presented at IEEE NSS-MIC, 2015, San-Diego, USA, 1–7 November 2015

    Google Scholar 

  103. Hofstadter R (1948) The detection of gamma-rays with Thallium-activated sodium iodide crystals. Phys Rev 74:100; (1949) Phys. Rev 75:796–810

    Google Scholar 

  104. Van Sciver W, Hofstadter R (1951) Scintillations in Thallium-Activated CaI2 and CsI. Phys Rev Let to the editor:1062

    Google Scholar 

  105. Hofstadter R, Europium activated calcium iodide scintillators, US Patent, 3,342,745, Patented September 19, 1967

    Google Scholar 

  106. Hofstadter R, O’Dell EW, Schmidt CT (1964) CaI2 and CaI2(Eu) scintillation crystals. IEEE Trans Nucl Sci 11:12–14

    Article  ADS  Google Scholar 

  107. Hofstadter R, O’Dell E, Schmidt C (1964) CaI2, CaI2-Eu and CaI2-Tl scintillation crystals. Rev Sci Instrum 35:246–248

    Article  ADS  Google Scholar 

  108. Hofstadter R (1968) Europium activated strontium iodide scintillators. US Patent, 3,373,279, Patented March 12, 1968

    Google Scholar 

  109. Murray RB (1958) Use of LiI(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl Instrum 2:237–248

    Article  Google Scholar 

  110. Lehmann W (1975) Heterogeneous halide-silica phosphors. J Electrochem Soc 122:748

    Article  Google Scholar 

  111. Brinkman P (1965) CsI(Na) scintillation of crystals. Phys Let 15:305

    Article  ADS  Google Scholar 

  112. Van Loef EVD, Dorenbos P, van Eijk CWE, Kramer K, Gudel HU (2000) High-energy-resolution scintillator: Ce3 + activated LaCl3. Appl Phys Lett 77:1467–1468

    Article  ADS  Google Scholar 

  113. Van Eijk CWE, Dorenbos P, van Loef EVD, Kramer K, Gudel HU (2001) Energy resolution of some new inorganic-scintillator gamma-ray detectors. Radiat Meas 33:521–525

    Article  Google Scholar 

  114. Shah KS (2005) Very fast doped LaBr3 scintillators and time-of-flight PET. US Patent 20050104001 A1, May 19, 2005

    Google Scholar 

  115. http://www.crystals.saint-gobain.com/Crystal_Scintillation.aspx

  116. Alekhin MS, de Haas JTM, Khodyuk IV, Krämer KW, Menge PR, Ouspensk V, Dorenbos P (2013) Improvement of -ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl Phys Lett 102:161915. doi:10.1063/1.4803440

    Article  ADS  Google Scholar 

  117. Alekhin MS, Biner DA, Krämer KW, Dorenbos P (2013) Improvement of LaBr3:5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping. J Appl Phys 113:224904. doi:10.1063/1.4810848

    Article  ADS  Google Scholar 

  118. Alekhin MS, de Haas JTM, Khodyuk IV, Kreamer KW, Menge PR, Ouspenski V, Dorenbos P (2013) Improvement of c-ray energy resolution of LaBr3:Ce31 scintillation detectors by Sr21 and Ca21 co-doping. Appl Phys Lett 102:161915

    Article  ADS  Google Scholar 

  119. Cherepy NJ, Hull G, Drobshoff A et al (2008) Strontium and barium iodide high light yield scintillators. Appl Phys Lett 92:083508

    Article  ADS  Google Scholar 

  120. Cherepy NJ, Payne SA, Asztalos SJ et al (2009) Scintillators with potential to supersede lanthanum bromide. IEEE Trans Nucl Sci 56:873–880

    Article  ADS  Google Scholar 

  121. Stand L, Zhuravleva M, Lindsey A, Melcher CL (2015) Growth and characterization of potassium strontium iodide: a new high light yield scintillator with 2.4 % energy resolution. Nucl Inst Methods Phys Res A780:40–44

    Article  ADS  Google Scholar 

  122. Vasilèv A, Gektin A (2014) Multiscale approach to estimation of scintillation characteristics. IEEE Trans Nucl Sci 61: 235–245

    Google Scholar 

  123. Combes CM, Dorenbos P, van Eijk CWE, Kremer KW, Gudel HU (1999) Optical and scintillation properties of pure and Ce3+ – doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J Lumin 82:299–305

    Article  Google Scholar 

  124. Cherginets V, Gektin A, Ginyov D, Alekseev V, Belikov K, Kosinov N, Litichevsky A, Ponomarenko T, Trefilova L, Zelenskaya O (2006) Growth and chacterization of Cs2LiYCl6 (Ce) scintillation crystals. In: Proc SCINT 2005, Alushta, Crimea, Ukraine, pp 257–261

    Google Scholar 

  125. Doty EP, Zhou X, Yang P, Rodriguez MA (2012) Elpasolite Scintillators. SANDIA REPORT SAND2012-9951 Unlimited Release Printed December 2012

    Google Scholar 

  126. Glodo J, Van Loef EVD, Higgins WM, Shah KS (2006) Scintillation properties of Cs2NaLaI6:Ce. In: IEEE Nuclear Science Symposium Conference Record N30-164, pp 1208–1211

    Google Scholar 

  127. Kanai Shah et al (2007) Presented at the Workshop on Radiation Detector Materials, MRS Fall Meeting, Boston, MA

    Google Scholar 

  128. Yan Z, Shalapska T, Bourret ED (2916) Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu. J Cryst Growth 435:42–45

    Article  ADS  Google Scholar 

  129. Khodyuk IV, Messina SA, Hayden TJ, Bourret ED, Bizarri GA (2015) Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: application to NaI:Tl. J Appl Phys 118:084901. doi:10.1063/1.4928771

    Article  ADS  Google Scholar 

  130. Yang K, Menge PR (2015) Improving c-ray energy resolution, non-proportionality, and decay time of NaI:Tl with Sr and Ca co-doping. J Appl Phys 118:213106

    Article  ADS  Google Scholar 

  131. Wu Y, Ren G, Nikl M, Chen X et al (2014) CsI:Tl+, Yb2+: ultra-high light yield scintillator with reduced afterglow. Cryst Eng Comm 16:3312–3317

    Article  Google Scholar 

  132. Burger A, Rowe E, Groza M, Figueroa K, Cherepy N, Beck P, Hunter S, Payne S (2015) Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy. Appl Phys Lett 107:143505

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lecoq, P., Gektin, A., Korzhik, M. (2017). Examples of Recent Crystal Development. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-319-45522-8_9

Download citation

Publish with us

Policies and ethics