Skip to main content

On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9924))

Included in the following conference series:

Abstract

Anomaly detection techniques were shown to help in detecting word-level annotation errors in read-speech corpora for text-to-speech synthesis. In this framework, correctly annotated words are considered as normal examples on which the detection methods are trained. Misannotated words are then taken as anomalous examples which do not conform to normal patterns of the trained detection models. As it could be hard to collect a sufficient number of examples to train and optimize an anomaly detector, in this paper we investigate the influence of the number of anomalous and normal examples on the detection accuracy of several anomaly detection models: Gaussian distribution based models, one-class support vector machines, and Grubbs’ test based model. Our experiments show that the number of examples can be significantly reduced without a large drop in detection accuracy.

This research was supported by the Czech Science Foundation (GA CR), project No. GA16-04420S. The access to the MetaCentrum clusters provided under the programme LM2010005 is highly appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matoušek, J., Romportl, J.: Recording and annotation of speech corpus for Czech unit selection speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 326–333. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Cox, S., Brady, R., Jackson, P.: Techniques for accurate automatic annotation of speech waveforms. In: International Conference on Spoken Language Processing, Sydney, Australia (1998)

    Google Scholar 

  3. Meinedo, H., Neto, J.: Automatic speech annotation and transcription in a broadcast news task. In: ISCA Workshop on Multilingual Spoken Document Retrieval, Hong Kong, pp. 95–100 (2003)

    Google Scholar 

  4. Adell, J., Agüero, P.D., Bonafonte, A.: Database pruning for unsupervised building of text-to-speech voices. In: IEEE International Conference on Acoustics Speech and Signal Processing, Toulouse, France, pp. 889–892 (2006)

    Google Scholar 

  5. Tachibana, R., Nagano, T., Kurata, G., Nishimura, M., Babaguchi, N.: Preliminary experiments toward automatic generation of new TTS voices from recorded speech alone. In: INTERSPEECH, Antwerp, Belgium, pp. 1917–1920 (2007)

    Google Scholar 

  6. Aylett, M.P., King, S., Yamagishi, J.: Speech synthesis without a phone inventory. In: INTERSPEECH, Brighton, Great Britain, pp. 2087–2090 (2009)

    Google Scholar 

  7. Boeffard, O., Charonnat, L., Maguer, S.L., Lolive, D., Vidal, G.: Towards fully automatic annotation of audiobooks for TTS. In: Language Resources and Evaluation Conference, Istanbul, Turkey, pp. 975–980 (2012)

    Google Scholar 

  8. Matoušek, J., Tihelka, D., Šmídl, L.: On the impact of annotation errors on unit-selection speech synthesis. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2012. LNCS, vol. 7499, pp. 456–463. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Matoušek, J., Tihelka, D.: Annotation errors detection in TTS corpora. In: INTERSPEECH, Lyon, France, pp. 1511–1515 (2013)

    Google Scholar 

  10. Matoušek, J., Tihelka, D.: Anomaly-based annotation errors detection in TTS corpora. In: INTERSPEECH, Dresden, Germany, pp. 314–318 (2015)

    Google Scholar 

  11. Matoušek, J., Tihelka, D., Romportl, J.: Building of a speech corpus optimised for unit selection TTS synthesis. In: Language Resources and Evaluation Conference, Marrakech, Morocco, pp. 1296–1299 (2008)

    Google Scholar 

  12. Kala, J., Matoušek, J.: Very fast unit selection using Viterbi search with zero-concatenation-cost chains. In: IEEE International Conference on Acoustics Speech and Signal Processing, Florence, Italy, pp. 2569–2573 (2014)

    Google Scholar 

  13. Young, S., Evermann, G., Gales, M.J.F., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.4). Cambridge University, Cambridge (2006)

    Google Scholar 

  14. Matoušek, J., Tihelka, D., Psutka, J.V.: Experiments with automatic segmentation for Czech speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 287–294. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443–1471 (2001)

    Article  MATH  Google Scholar 

  16. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11, 1–21 (1969)

    Article  Google Scholar 

  17. Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, V.M.B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perror, M., Duchesnay, É.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Matoušek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Matoušek, J., Tihelka, D. (2016). On the Influence of the Number of Anomalous and Normal Examples in Anomaly-Based Annotation Errors Detection. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2016. Lecture Notes in Computer Science(), vol 9924. Springer, Cham. https://doi.org/10.1007/978-3-319-45510-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45510-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45509-9

  • Online ISBN: 978-3-319-45510-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics