CzEng 1.6: Enlarged Czech-English Parallel Corpus with Processing Tools Dockered

  • Ondřej Bojar
  • Ondřej Dušek
  • Tom  Kocmi
  • Jindřich Libovický
  • Michal Novák
  • Martin Popel
  • Roman Sudarikov
  • Dušan Variš
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9924)

Abstract

We present a new release of the Czech-English parallel corpus CzEng. CzEng 1.6 consists of about 0.5 billion words (“gigaword”) in each language. The corpus is equipped with automatic annotation at a deep syntactic level of representation and alternatively in Universal Dependencies. Additionally, we release the complete annotation pipeline as a virtual machine in the Docker virtualization toolkit.

Keywords

Parallel corpus Automatic annotation Machine translation 

References

  1. 1.
    Bojar, O., Žabokrtský, Z., Dušek, O., Galuščáková, P., Majliš, M., Mareček, D., Maršík, J., Novák, M., Popel, M., Tamchyna, A.: The joy of parallelism with CzEng 1.0. In: LREC, Istanbul, Turkey, pp. 3921–3928 (2012)Google Scholar
  2. 2.
    Callison-Burch, C., Koehn, P., Monz, C., Peterson, K., Przybocki, M., Zaidan, O.: Findings of the 2010 joint workshop on statistical machine translation and metrics for machine translation. In: Joint WMT and MetricsMATR, pp. 17–53 (2010)Google Scholar
  3. 3.
    Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva, V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., Turchi, M.: Findings of the 2015 workshop on statistical machine translation. In: WMT, Lisboa, Portugal, pp. 1–46 (2015)Google Scholar
  4. 4.
    Tiedemann, J.: News from OPUS - a collection of multilingual parallel corpora with tools and interfaces. In: RANLP, pp. 237–248 (2009)Google Scholar
  5. 5.
    Esplà-Gomis, M., Forcada, M.L.: Combining Content-based and URL-Based Heuristics to Harvest Aligned Bitexts from Multilingual Sites With Bitextor. Prague Bulletin of Mathematical Linguistics, vol. 93. Charles University (2010)Google Scholar
  6. 6.
    Popel, M., Žabokrtský, Z.: TectoMT: modular NLP framework. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 293–304. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence and Its Semantic and Pragmatic Aspects. Academia/Reidel Publishing Company, Prague (1986)Google Scholar
  8. 8.
    McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT/EMNLP, pp. 523–530 (2005)Google Scholar
  9. 9.
    Straková, J., Straka, M., Hajič, J.: Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In: Proceedings of ACL: System Demonstrations, Baltimore, Maryland, pp. 13–18. ACL (2014)Google Scholar
  10. 10.
    Bejček, E., Panevová, J., Popelka, J., Straňák, P., Ševčíková, M., Štěpánek, J., Žabokrtský, Z.: Prague dependency treebank 2.5 a revisited version of PDT 2.0. In: Coling, pp. 231–246 (2012)Google Scholar
  11. 11.
    Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31, 71–106 (2005)CrossRefGoogle Scholar
  12. 12.
    Mareek, D., Duek, O., Rosa, R.: Progress report on translation with deep generation. Project FAUST deliverable D5.5 (2012)Google Scholar
  13. 13.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. JMLR 9, 1871–1874 (2008)MATHGoogle Scholar
  14. 14.
    Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Bojar, O., Cinková, S., Fučíková, E., Mikulová, M., Pajas, P., Popelka, J., Semecký, J., Šindlerová, J., Štěpánek, J., Toman, J., Urešová, Z., Žabokrtský, Z.: Announcing Prague Czech-english dependency treebank 2.0. In: LREC, Istanbul, Turkey (2012)Google Scholar
  15. 15.
    Langford, J., Li, L., Strehl, A.: Vowpal Wabbit online learning project. Technical report (2007)Google Scholar
  16. 16.
    Dušek, O., Fučíková, E., Hajič, J., Popel, M., Šindlerová, J., Urešová, Z.: Using parallel texts and lexicons for verbal word sense disambiguation. In: Depling, Uppsala, Sweden, pp. 82–90 (2015)Google Scholar
  17. 17.
    Urešová, Z., Dušek, O., Fučíková, E., Hajič, J., Šindlerová, J.: Bilingual English-Czech valency lexicon linked to a parallel corpus. In: LAW IX, Denver, Colorado, pp. 124–128 (2015)Google Scholar
  18. 18.
    Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti, A.: BART: a modular toolkit for coreference resolution. In: ACL-HLT, pp. 9–12 (2008)Google Scholar
  19. 19.
    Uryupina, O., Moschitti, A., Poesio, M.: BART goes multilingual: the UniTN/Essex submission to the CoNLL-2012 shared task. In: EMNLP-CoNLL (2012)Google Scholar
  20. 20.
    Bergsma, S., Yarowsky, D.: NADA: a robust system for non-referential pronoun detection. In: Hendrickx, I., Lalitha Devi, S., Branco, A., Mitkov, R. (eds.) DAARC 2011. LNCS, vol. 7099, pp. 12–23. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Nedoluzhko, A., Novák, M., Cinková, S., Mikulová, M., Mírovský, J.: Coreference in Prague Czech-English dependency treebank. In: LREC (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ondřej Bojar
    • 1
  • Ondřej Dušek
    • 1
  • Tom  Kocmi
    • 1
  • Jindřich Libovický
    • 1
  • Michal Novák
    • 1
  • Martin Popel
    • 1
  • Roman Sudarikov
    • 1
  • Dušan Variš
    • 1
  1. 1.Faculty of Mathematics and Physics, Institute of Formal and Applied LinguisticsCharles University in PraguePragueCzech Republic

Personalised recommendations