Skip to main content

Fractional Order Back Stepping Sliding Mode Control for Blood Glucose Regulation in Type I Diabetes Patients

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

In this paper a fractional order backstepping sliding mode controller is proposed for Blood Glucose regulation using Bergman minimal model. A feedback control law is designed based on backstepping algorithm and a fractional order sliding surface is introduced. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the fractional order sliding mode control provides robustness. Simulation results show that the proposed fractional order backstepping sliding mode controller are able to reject both matched and mismatched uncertainties and disturbance with a chattering free control law and the simulation results of the proposed controller are compared with the Backstepping sliding mode controller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergman, R.N., Philips, L.S., Cobelli, C.: Physiologic evaluation of factors controlling glucose tolerance in man. J. Clin. Investig. 68(6), 1456–1467 (1981)

    Article  Google Scholar 

  2. Marchetti, G., Barolo, M., Jovanovic, L., Zisser, H., Seborg, D.E.: An improved PID switching control strategy for type 1 diabetes. IEEE Trans. BioMed. Eng. 55(3), 857–865 (2008)

    Article  Google Scholar 

  3. Parker, R.S., Doyle, F.J., Peppas, N.A.: A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans. BioMed. Eng. 46(2), 148–157 (1999)

    Article  Google Scholar 

  4. Wai Ting, C., Quek, C.: A novel blood glucose regulation using TSK-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy Inference scheme. IEEE Trans. Neural Netw. 20(5), 856–871 (2009)

    Google Scholar 

  5. Grant, P.: A new approach to diabetic control: fuzzy logic and insulin pump technology. Med. Eng. Phys. 29(7), 824–827 (2007)

    Article  Google Scholar 

  6. Allam, F., Nossair, Z., Gomma, H., Ibrahim, I., Abdelsalam, M.: Evaluation of using a recurrent neural network (RNN) and a fuzzy logic controller (FLC) in closed loop system to regulate blood glucose for type-1 diabetic patients. Int. J. Intell. Syst. Appl. 4(10), 58–71 (2012)

    Google Scholar 

  7. Kaveh, P., Shtessel, Y.B.: Blood glucose regulation using higher-order sliding mode control. Int. J. Robust Nonlinear Control 25(18), 557–569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hernandez, A.G.G., Fridman, L., Levant, A., Shtessel, Y.B., Leder, R., Monsalve, C.R., Andrade, S.I.: High-order sliding-mode control for blood glucose: practical relative. Control Eng. Pract. 21(5), 747–758 (2013)

    Article  Google Scholar 

  9. Tadrisi Parsa, N., Vali, A.R., Ghasemi, R.: Back stepping sliding mode control of blood glucose for type I diabetes. Int. J. Med. Health Biomed. Pharm. Eng. 8(11), 749–753 (2014)

    Google Scholar 

  10. Ali, S., Padhi, R.: Optimal blood glucose regulation of diabetic patients using single network adaptive critics. Optim. Control Appl. Methods 32(2), 196–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. N’Doye, I., Voos, H., Darouach, M., Schneider, J.G.: Static output feedback H\(\infty \) control for a fractional-order glucose-insulin system. Int. J. Control Autom. 13(4), 798–807 (2015)

    Article  Google Scholar 

  12. Leon-Vargasa, F., Garellib, F., De Battistab, H., Vehia, J.: Postprandial blood glucose control using a hybrid adaptive PD controller with insulin-on-board limitation. Biomed. Signal Process. Control 8(6), 724–732 (2013)

    Article  Google Scholar 

  13. Ghorbani, M., Bogdan, P.: Reducing risk of closed loop control of blood glucose in artificial pancreas using fractional calculus. In: 36th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 4839–4842 (2014)

    Google Scholar 

  14. Goharimanesh, M., Lashkaripour, A., Abouei Mehrizi, A.: Fractional order PID controller for diabetes patients. J. Comput. Appl. Mech. 46(1), 69–76 (2015)

    Google Scholar 

  15. Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the cart-pendulum system. ISA Trans. 51(6), 870–880 (2013)

    Article  Google Scholar 

  16. Tenreiro Machado, J., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16(3), 1140–1153 (2011)

    Google Scholar 

  17. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls. Springer, London (2010)

    Book  MATH  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, California (1999)

    MATH  Google Scholar 

  19. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Application. 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  23. Palumbo, P., Ditlevsen, S., Bertuzzi, A., De Gaetano, A.: Mathematical modeling of the glucose-insulin system: a review. J. Math. Biosci. 244(2), 69–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Balakrishnan, N.P., Rangaiah, G.P., Samavedham, L.: Review and analysis of blood glucose (BG) models for type 1 diabetic patients. Ind. Eng. Chem. Res. 50(21), 12041–12066 (2011)

    Article  Google Scholar 

  25. Fisher, M.E.: A semi closed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. BioMed. Eng. 38(1), 57–61 (1991)

    Article  Google Scholar 

  26. N’Doye, I., Voos, H., Darouach, M., Schneider, J.G., Knauf, N.: Static output feedback stabilization of nonlinear fractional-order glucose-insulin system. In: IEEE EMBS 19th International Conference on Biomedical Engineering and Sciences, pp. 589–594 (2012)

    Google Scholar 

  27. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  28. Komurcugil, H.: Adaptive terminal sliding-mode control strategy for DC-DC buck converters. ISA Trans. 51(6), 673–681 (2012)

    Article  Google Scholar 

  29. Liang, C., Li, Y.: Attitude analysis and robust adaptive backstepping sliding mode control of spacecrafts orbiting irregular asteroids. Math. Probl. Eng. 15–30 (2014)

    Google Scholar 

  30. Delavari, H., Lanusse, P., Sabatier, J.: Fractional order controller design for a flexible manipulator robot. Asian J. Control. 15(3), 783–795 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin, C., Dadras, S., Zhong, S.M., Chen, Y.Q.: Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Appl. Math. Model. 37(4), 2469–2483 (2013)

    Article  MathSciNet  Google Scholar 

  32. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91(3), 437–445 (2011)

    Article  MATH  Google Scholar 

  33. Weia, Y., Chena, Y., Lianga, S., Wanga, Y.: A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing 165, 395–402 (2015)

    Article  Google Scholar 

  34. Wang, Z.: Synchronization of an uncertain fractional-order chaotic system via backstepping sliding mode control. Discrete Dyn. Nat. Soc. (2013)

    Google Scholar 

  35. Delavari, H.: A novel fractional adaptive active sliding mode controller for synchronization of non-identical chaotic systems with disturbance and uncertainty. Int. J. Dyn. Control. 67, 2433–2439 (2011)

    MathSciNet  Google Scholar 

  36. Delavari, H., Ranjbar, A.N., Ghaderi, R., Momani, S.: Fractional order control of a coupled tank. Nonlinear Dyn. 61(3), 383–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Heydarinejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Heydarinejad, H., Delavari, H. (2017). Fractional Order Back Stepping Sliding Mode Control for Blood Glucose Regulation in Type I Diabetes Patients. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics