Improved Assessment of Groundwater Recharge in a Mediterranean Karst Region: Andalusia, Spain

  • Lara KirnEmail author
  • Matías Mudarra
  • Ana Marín
  • Bartolome Andreo
  • Andreas Hartmann
Conference paper
Part of the Advances in Karst Science book series (AKS)


Karst aquifers provide a significant contribution to the drinking water supplies of many countries in Europe. Estimating their recharge rate, i.e. the fraction of precipitation that is turned into groundwater recharge, is an essential tool to assess usable groundwater water volumes. In this study, we extended a previously developed GIS-based recharge estimation method (APLIS) to take into account climate variability by adding a simple soil moisture routine whose parameters were a priori estimated with globally available FAO soil property data. We applied the new approach to a karst system in southern Spain and evaluated our results with spring discharge observations. To exemplify the prediction skills of the new method, we applied the five climate models from the Inter-Sectoral Impact Model Intercomparison Project to assess changes in recharge rates of the study site until the end of this century.


Groundwater Recharge Recharge Rate Karst Aquifer Karst System Annual Recharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The data used in this study were provided by the Department of Geology and Centre of Hydrogeology of the University of Malaga (CEHIUMA), Malaga 29071, Spain. This is a contribution to the project CGL2015-65858R and to the research group 308 of Andalusian Government. We also want to thank the anonymous reviewer for her/his valuable recommendations.


  1. Andreo, B., Vías, J., Durán, J., Jiménez, P., López-Geta, J., Carrasco, F. (2008). Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol. J. 16, 911–925.Google Scholar
  2. Blume, H.-P., Brümmer, G.W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M. (2009). Lehrbuch der Bodenkunde. Springer-Verlag.Google Scholar
  3. Brouyère, S., Carabin, G., Dassargues, A. (2003). Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol. J. 12. doi: 10.1007/s10040-003-0293-1
  4. FAO/IIASA/ISRIC/ISSCAS/JRCv (2012). Harmonized World Soil Database (version 1.2).Google Scholar
  5. Ford, D.C., Williams, P.W. (2013). Karst Hydrogeology and Geomorphology. John Wiley & Sons.Google Scholar
  6. Giorgi, F., Lionello, P. (2008). Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104. doi: 10.1016/j.gloplacha.2007.09.005
  7. Gleeson, T., Wada, Y., Bierkens, M.F., van Beek, L.P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200. doi: 10.1038/nature11295
  8. Hao, Y., Yeh, T.-C.J., Gao, Z., Wang, Y., Zhao, Y. (2006). A gray system model for studying the response to climatic change: The Liulin karst springs, China. J. Hydrol. 328, 668–676. doi: 10.1016/j.jhydrol.2006.01.022
  9. Hartmann, A., Lange, J., Vivó Aguado, À., Mizyed, N., Smiatek, G., Kunstmann, H. (2012). A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring. J. Hydrol. 468–469, 130–138. doi: 10.1016/j.jhydrol.2012.08.024
  10. Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., Weiler, M. (2014a). Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 52, 218–242. doi: 10.1002/2013rg000443
  11. Hartmann, A., Mudarra, M., Andreo, B., Marin, A., Wagener, T., Lange, J. (2014b). Modeling spatio-temporal impacts of hydro-climatic extremes on a karst aquifer in Southern Spain. Water Resour. Res. moderate revisions, resubmit until July 2014. doi: 10.1002/2014WR015685
  12. Hempel, S., Frieler, K., Warszawski, L., Schewe, J., Piontek, F. (2013). A trend-preserving bias correction – the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236. doi: 10.5194/esd-4-219-2013
  13. Loaiciga, H.A., Maidment, D.R., Valdes, J.B. (2000). Climate-change impacts in a regional karst aquifer, Texas, USA. J. Hydrol. 227, 173–194. doi: 10.1016/s0022-1694(99)00179-1
  14. Marín, A.I. (2009). The application of GIS to evaluation of resources and vulnerability to contamination of carbonated aquifer. Test site Alta Cadena (Málaga province). University of Málaga (Spain).Google Scholar
  15. Marín, A.I., Andreo, B., Mudarra, M. (2015). Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci. Total Environ. 532, 435–446. doi: 10.1016/j.scitotenv.2015.05.029
  16. Martín-Algarra, A. (1987). Evolución geológica Alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética (Sector Occidental). Universidad de Granada.Google Scholar
  17. Moss, R.H., Edmonds, J. a, Hibbard, K. a, Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G. a, Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J. (2010). The next generation of scenarios for climate change research and assessment. Nature 463, 747–756. doi: 10.1038/nature08823
  18. Mudarra, M., Andreo, B., Marín, A.I., Vadillo, I., Barberá, J.A. (2014). Combined use of natural and artificial tracers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, southern Spain). Hydrogeol. J. 22, 1027–1039. doi: 10.1007/s10040-014-1117-1
  19. Portmann, F.T., Döll, P., Eisner, S., Flörke, M. (2013). Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 8, 24023.Google Scholar
  20. Ries, F., Lange, J., Schmidt, S., Puhlmann, H., Sauter, M. (2015). Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol. Earth Syst. Sci. 19, 1439–1456. doi: 10.5194/hess-19-1439-2015
  21. Scanlon, B., Healy, R., Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10, 18–39.Google Scholar
  22. Thornthwaite, C.W. (1948). An Approach toward a Rational Classification of Climate. Geogr. Rev. 38, 55–94. doi: 10.2307/210739

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Lara Kirn
    • 1
    Email author
  • Matías Mudarra
    • 2
  • Ana Marín
    • 2
  • Bartolome Andreo
    • 2
  • Andreas Hartmann
    • 1
    • 3
  1. 1.Faculty of Earth and Environmental ResourcesUniversity of FreiburgFreiburgGermany
  2. 2.Facultad de CienciasCentro de Hidrogeología de La Universidad de MálagaMalagaSpain
  3. 3.Department of Civil EngineeringUniversity of BristolBristolUK

Personalised recommendations