Skip to main content

On Application Melnikov Method to Detecting the Edge of Chaos for a Micro-Cantilever

  • Conference paper
  • First Online:
New Advances in Mechanisms, Mechanical Transmissions and Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 46))

  • 2191 Accesses

Abstract

In this paper, Melnikov method is employed to detecting the edge of chaos for a micro-cantilever. The difficulties arising from the integrals in Melnikov method are refrained through using MATLAB/Simulink. The edge of chaos plotted on a two parameter plane indicate that the condition of chaos occurrence derived from Melnikov method is compact for some system parameters, but is conservative for the others. Therefore, applying Melnikov method to detecting edge of chaos is far from perfect method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001–34002 (2010)

    Article  Google Scholar 

  2. Seleim, A., Towfighian, S., Delande, E., Abdel-Rahman, E., Heppler, G.: Dynamics of a close-loop controlled MEMS resonator 69(1), 615–633 (2012)

    Google Scholar 

  3. Langton, C.G.: Computation at the edge of chaos: phase transition and emergent computation. Phys. D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  4. Melnikov, V.K.: On the stability of the centre for time periodic perturbations. Trans. Moscow Math. 12, 1–57 (1963)

    Google Scholar 

  5. Awrejcewicz, J., Holicke, M.: M: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific Publishing Co. Pre Ltd, Singapore (2007)

    Book  MATH  Google Scholar 

  6. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091–3099 (2010)

    Article  Google Scholar 

  7. Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in MEMS resonators. Appl. Math. Model. 35(12), 5533–5552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, J.-X., Zhang, Q.-C., Wang, W.: Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 492–510 (2015)

    Article  Google Scholar 

  9. Maani Miandoab, E., Pishkenari, H.N., Yousefi-Koma, A., Tajaddodianfar, F.: Chaos prediction in MEMS-NEMS resonators. Int. J. Eng. Sci. 82, 74–83 (2014)

    Google Scholar 

  10. Tajaddodianfar, F., Nejat Pishkenari, H., Hairi Yazdi, M.R.: Prediction of chaos in electrostatically actuated arch micro-nano resonators: Analytical approach. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 182–195 (2016)

    Google Scholar 

  11. Ling, F.H., Bao, G.W.: A numerical implementation of Melnikov’s method. Phys. Lett. A 122(8), 413–417 (1987)

    Article  Google Scholar 

  12. Bruhn, B., Koch, B.P.: Homoclinc and heteroclinic bifurcations in rf SQUIDS. Zeitschrift fur Naturforschung 43, 930–938 (1988)

    MathSciNet  Google Scholar 

  13. Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6, 125–142 (1994)

    Article  Google Scholar 

  14. Zhang, W.-M., Meng, G.: Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitation in MEMS. Sens. Actuators A 199(2), 291–299 (2005)

    Article  MathSciNet  Google Scholar 

  15. Jimenez-Triana, A., Zhu, G.-C., Saydy, L.: Chaos synchronization of an electrostatic MEMS resonator in the presence of parametric uncertainties. In: Proceedings of 2011 American Control Conference, San Francisco, CA, USA, pp. 5115–5120 (2011)

    Google Scholar 

  16. Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A 142, 306–315 (2008)

    Article  Google Scholar 

  17. Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. Pearson Education Inc. (2004)

    Google Scholar 

  18. Xu, P.-C., Jing, Z.-J.: Heteroclinic orbits and chaotic regions for Josephson system. J. Math. Anal. Appl. 376(1), 103–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Doroshin, A.V.: Heteroclinic dynamics and attitude motion chaotization of coaxial bodies and dual-spin spacecraft. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1460–1474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wiggins, S.: Introduction to Applied Nonlinear dynamical Systems and Chaos. Springer (2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of NSFC (National Natural Science Foundation of China) under the grant No. 51175437 and No. 51575457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xie, J., He, SH., Liu, ZH., Chen, Y. (2017). On Application Melnikov Method to Detecting the Edge of Chaos for a Micro-Cantilever. In: Corves, B., Lovasz, EC., Hüsing, M., Maniu, I., Gruescu, C. (eds) New Advances in Mechanisms, Mechanical Transmissions and Robotics. Mechanisms and Machine Science, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-45450-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45450-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45449-8

  • Online ISBN: 978-3-319-45450-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics