Skip to main content

Motion Sickness Susceptibility and Management at Sea

Abstract

Seasickness has been noted from the earliest times. Over 2000 years ago the Greek physician Hippocrates wrote, ‘… sailing on the sea proves that motion disorders the body …’ The word ‘Nausea’ derives from the Greek root word ‘naus’, hence ‘nautical’ referring to ships. Motion sickness can be provoked by a wide variety of transport environments, including sea, land, air and space and in addition may be induced by some types of visual stimuli. This chapter describes the signs and symptoms of motion sickness, the possible effects on human performance and the different types of provocative stimuli. The mechanism for motion sickness is generally accepted to involve sensory conflict, for which the evidence is reviewed. But what reason or purpose does motion sickness serve a purpose, if any? This ‘why’ of motion sickness is analyzed from both evolutionary and non-functional mal-adaptive theoretical perspectives. Individual differences in susceptibility are great and so predictors for susceptiblity are reviewed. Finally the effectiveness of behavioural and pharmacological countermeasures are evaluated.

Keywords

  • Motion sickness
  • Seasickness
  • Nausea
  • Sopite
  • Cognition
  • Performance
  • Vestibular
  • Vibration
  • Motion sickness susceptibility
  • Habituation
  • Scopolamine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45430-6_7
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-45430-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

References

  • Ahmed, S., Sileno, A. P., deMeireles, J. C., et al. (2000). Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects. Pharmaceutical Research, 17, 974–977.

    PubMed  CrossRef  Google Scholar 

  • Arshad, Q., Cerchiai, N., Goga, U., et al. (2015). Electro-cortical therapy for motion sickness. Neurology Sep 4. pii: 10.1212/WNL.0000000000001989. [Epub ahead of print]

  • Balaban, C. D. (1999). Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Current Opinion in Neurology, 12, 29–33.

    PubMed  CrossRef  Google Scholar 

  • Balaban, C. D., Ogburn, S. W., Warshafsky, S. G., et al. (2014). Identification of neural networks that contribute to motion sickness through principal components analysis of fos labelling induced by galvanic vestibular stimulation. PLoS ONE, 9(1), e86730. doi:10.1371/journal.pone.0086730

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baloh, R. W. (1998). Advances in neuro-otology. Current Opinion in Neurology, 11, 1–3.

    PubMed  CrossRef  Google Scholar 

  • Benson, A. J. (1999). Motion sickness. In J. Ernsting, A. N. Nicholson, & D. S. Rainford (Eds.), Aviation medicine (pp. 318–338). Oxford, UK: Butterworth Ltd.

    Google Scholar 

  • Benson, A. J. (2002). Motion sickness. In K. Pandolf & R. Burr (Eds.), Medical aspects of harsh environments (Vol. 2, pp. 1060–1094). Washington, DC: Walter Reed Army Medical Center.

    Google Scholar 

  • Benson, P. W., Hooker, J. B., Koch, K. L., et al. (2012). Bitter taster status predicts susceptibility to vection-induced motion sickness and nausea. Journal of Neurogastroenterology and Motility, 24, 134–140.

    CrossRef  Google Scholar 

  • Bertalanffy, P., Hoerauf, K., Fleischhackl, R., et al. (2004). Korean hand acupressure for motion sickness in prehospital trauma care: A prospective, randomized, double-blinded trial in a geriatric population. Anesthesia and Analgesia, 98, 220–223.

    PubMed  CrossRef  Google Scholar 

  • Bijveld, M. M., Bronstein, A. M., Golding, J. F., et al. (2008). Nauseogenicity of off-vertical-axis rotation versus equivalent visual motion. Aviation, Space and Environmental Medicine, 79, 661–665.

    CrossRef  Google Scholar 

  • Boldingh, M. I., Ljostad, U., Mygland, A., et al. (2011). Vestibular sensitivity in vestibular migraine: VEMPs and motion sickness susceptibility. Cephalalgia, 31, 1211–1219.

    PubMed  CrossRef  Google Scholar 

  • Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25, 23–33.

    PubMed  CrossRef  Google Scholar 

  • Bos, J. E., & Bles, W. (1998). Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Research Bulletin, 47, 537–542.

    PubMed  CrossRef  Google Scholar 

  • Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviation, Space and Environmental Medicine, 76, 1111–1118.

    Google Scholar 

  • Bos, J. E., Ledegang, W. D., Lubeck, A. J., et al. (2013). Cinerama sickness and postural instability. Ergonomics, 56, 1430–1436.

    PubMed  CrossRef  Google Scholar 

  • Bosser, G., Caillet, G., Gauchard, G., et al. (2006). Relation between motion sickness susceptibility and vasovagal syncope susceptibility. Brain Research Bulletin, 68, 217–226.

    PubMed  CrossRef  Google Scholar 

  • Bowins, B. (2010). Motion sickness: A negative reinforcement model. Brain Research Bulletin, 81, 7–11.

    PubMed  CrossRef  Google Scholar 

  • Brey, R. L. (2005). Both migraine and motion sickness may be due to low brain levels of serotonin. Neurology, 65(4), E9–E10.

    PubMed  CrossRef  Google Scholar 

  • Bruce, D. G., Golding, J. F., & Pethybridge, R. J. (1990). Acupressure and motion sickness. Aviation, Space and Environmental Medicine, 61, 361–365.

    Google Scholar 

  • Bubka, A., Bonato, F., Urmey, S., et al. (2006). Rotation velocity change and motion sickness in an optokinetic drum. Aviation, Space and Environmental Medicine, 77, 811–815.

    Google Scholar 

  • Cevette, M. J., Stepanek, J., Cocco, D., et al. (2012). Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness. Aviation, Space and Environmental Medicine, 83, 549–555.

    CrossRef  Google Scholar 

  • Cha, Y. H. (2009). Mal de debarquement. Seminars in Neurology, 29, 520–527.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cha, Y. H., Cui, Y., & Baloh, R. W. (2013). Repetitive transcranial magnetic stimulation for mal de debarquement syndrome. Otology & Neurotology, 34, 175–179.

    CrossRef  Google Scholar 

  • Chang, C. H., Pan, W. W., Chen, F. C., et al. (2013). Console video games, postural activity, and motion sickness during passive restraint. Experimental Brain Research, 229, 235–242.

    PubMed  CrossRef  Google Scholar 

  • Cheung, B., & Hofer, K. (2005). Desensitization to strong vestibular stimuli improves tolerance to simulated aircraft motion. Aviation, Space and Environmental Medicine, 76, 1099–1104.

    Google Scholar 

  • Cheung, B., Nakashima, A. M., & Hofer, K. D. (2011). Various anti-motion sickness drugs and core body temperature changes. Aviation, Space and Environmental Medicine, 82, 409–415.

    CrossRef  Google Scholar 

  • Cheung, B. S. K., Money, K. E., & Jacobs, I. (1990). Motion sickness susceptibility and aerobic fitness: A longitudinal study. Aviation, Space and Environmental Medicine, 61, 201–204.

    Google Scholar 

  • Claremont, C. A. (1931). The psychology of sea-sickness. Psyche, 11, 86–90.

    Google Scholar 

  • Clark, B. C., LePorte, A., Clark, S., et al. (2013). Effects of persistent Mal de debarquement syndrome on balance, psychological traits, and motor cortex excitability. Journal of Clinical Neuroscience, 20, 446–450.

    PubMed  CrossRef  Google Scholar 

  • Cohen, B., Dai, M., Yakushin, S. B., et al. (2008). Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Progress in Brain Research, 171, 543–553.

    PubMed  CrossRef  Google Scholar 

  • Cowings, P. S., & Toscano, W. B. (2000). Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. Journal of Clinical Pharmacology, 40, 1154–1165.

    PubMed  Google Scholar 

  • Cuomo-Granston, A., & Drummond, P. D. (2010). Migraine and motion sickness: What is the link? Progress in Neurobiology, 91, 300–312.

    PubMed  CrossRef  Google Scholar 

  • Dai, M., Raphan, T., & Cohen, B. (2011). Prolonged reduction of motion sickness sensitivity by visual-vestibular interaction. Experimental Brain Research, 210, 503–513.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Diamond, S. G., & Markham, C. H. (1991). Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviation, Space and Environmental Medicine, 62, 201–205.

    Google Scholar 

  • Diels, C., & Howarth, P. A. (2013). Frequency characteristics of visually induced motion sickness. Human Factors, 55, 595–604.

    PubMed  CrossRef  Google Scholar 

  • Dobie, T., McBride, D., Dobie, T., Jr., et al. (2001). The effects of age and sex on susceptibility to motion sickness. Aviation, Space and Environmental Medicine, 72, 13–20.

    Google Scholar 

  • Drummond, P. D. (2005). Effect of tryptophan depletion on symptoms of motion sickness in migraineurs. Neurology, 65, 620–2.

    PubMed  CrossRef  Google Scholar 

  • Eversmann, T., Gottsmann, M., Uhlich, E., et al. (1978). Increased secretion of growth hormone, prolactin, antidiuretic hormone and cortisol induced by the stress of motion sickness. Aviation, Space and Environmental Medicine, 49, 55.

    Google Scholar 

  • Farmer, A. D., Al Omran, Y., Aziz, Q., et al. (2014). The role of the parasympathetic nervous system in visually induced motion sickness: Systematic review and meta-analysis. Experimental Brain Research, 232, 2665–2673.

    PubMed  CrossRef  Google Scholar 

  • Finley, J. C., Jr., O’Leary, M., Wester, D., et al. (2004). A genetic polymorphism of the alpha2-adrenergic receptor increases autonomic responses to stress. Journal of Applied Physiology, 96, 2231–2239.

    PubMed  CrossRef  Google Scholar 

  • Flanagan, M. B., May, J. G., & Dobie, T. G. (2005). Sex differences in tolerance to visually-induced motion sickness. Aviation, Space and Environmental Medicine, 76, 642–646.

    Google Scholar 

  • Furman, J. M., Marcus, D. A., & Balaban, C. D. (2011). Rizatriptan reduces vestibular-induced motion sickness in migraineurs. Journal of Headache and Pain, 12, 81–88.

    PubMed  CrossRef  Google Scholar 

  • Gahlinger, P. M. (2000). Cabin location and the likelihood of motion sickness in cruise ship passengers. Journal of Travel Medicine, 7, 120–124.

    PubMed  CrossRef  Google Scholar 

  • Gil, A., Nachum, Z., Dachir, S., et al. (2005). Scopolamine patch to prevent seasickness: clinical response vs. plasma concentration in sailors. Aviation, Space and Environmental Medicine, 76, 766–770.

    Google Scholar 

  • Golding, J. F. (1992). Phasic skin conductance activity and motion sickness. Aviation, Space and Environmental Medicine, 63, 165–171.

    Google Scholar 

  • Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. The Brain Research Bulletin, 47, 507–516.

    PubMed  CrossRef  Google Scholar 

  • Golding, J. F. (2006a). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual Differences, 41, 237–248.

    CrossRef  Google Scholar 

  • Golding, J. F. (2006b). motion sickness susceptibility. Autonomic Neuroscience, 30, 67–76.

    CrossRef  Google Scholar 

  • Golding, J. F., & Gresty, M. A. (2005). Motion sickness. Current Opinion in Neurology, 18, 29–34.

    PubMed  CrossRef  Google Scholar 

  • Golding, J. F., & Gresty, M. A. (2016). Biodynamic hypothesis for the frequency tuning of motion sickness. Aerospace Medicine & Human Performance, 87(1), 65–68.

    CrossRef  Google Scholar 

  • Golding, J. F., Markey, H. M., & Stott, J. R. R. (1995). The effects of motion direction, body axis, and posture, on motion sickness induced by low frequency linear oscillation. Aviation, Space and Environmental Medicine, 66, 1046–1051.

    Google Scholar 

  • Golding, J. F., Mueller, A. G., & Gresty, M. A. (2001). A motion sickness maximum around 0.2 Hz frequency range of horizontal translational oscillation. Aviation, Space and Environmental Medicine, 72, 188–192.

    Google Scholar 

  • Golding, J. F., Kadzere, P. N., & Gresty, M. A. (2005). Motion sickness susceptibility fluctuates through the menstrual cycle. Aviation, Space and Environmental Medicine, 76, 970–973.

    Google Scholar 

  • Golding, J. F., Paillard, A. C., & Denise, P. (2015). Motion sickness in zero-g parabolic flights. Aerospace Medicine and Human Performance, 86, 159.

    Google Scholar 

  • Golding, J. F., & Stott, J. R. R. (1997a). Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. Journal of Vestibular Research, 7, 421–428.

    PubMed  CrossRef  Google Scholar 

  • Golding, J. F., & Stott, J. R. R. (1997b). Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. British Journal of Clinical Pharmacology, 43, 633–637.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Golding, J. F., & Tayyaba, S. A. (2014). Does motion sickness susceptibility relate to visceral disgust and bitter taste sensitivity? Aviation, Space and Environmental Medicine, 85, 344.

    Google Scholar 

  • Golding, J. F., Bles, W., Bos, J. E., et al. (2003). Motion sickness and tilts of the inertial force environment: Active suspension systems versus active passengers. Aviation, Space and Environmental Medicine, 74, 220–227.

    Google Scholar 

  • Golding, J. F., Prosyanikova, O., Flynn, M., et al. (2011). The effect of smoking nicotine tobacco versus smoking deprivation on motion sickness. Autonomic Neuroscience: Basic and Clinical, 160, 53–58.

    CrossRef  Google Scholar 

  • Gordon, C. R., Ben-Aryeh, H., Spitzer, O., et al. (1994). Seasickness susceptibility, personality factors, and salivation. Aviation, Space and Environmental Medicine, 65, 610–614.

    Google Scholar 

  • Gordon, C. R., Gonen, A., Nachum, Z., et al. (2001). The effects of dimenhydrinate, cinnarizine and transdermal scopolamine on performance. Journal of Psychopharmacology, 15, 167–172.

    PubMed  CrossRef  Google Scholar 

  • Graybiel, A. (1970). Susceptibility to acute motion sickness in blind persons. Aerospace Medicine, 41, 650–653.

    PubMed  Google Scholar 

  • Gresty, M. A., & Golding, J. F. (2009). Impact of vertigo and spatial disorientation on concurrent cognitive tasks. Annals of the New York Academy of Sciences Journal, 1164, 263–267.

    CrossRef  Google Scholar 

  • Griffin, M. J., & Newman, M. M. (2004). Visual field effects on motion sickness in cars. Aviation, Space and Environmental Medicine, 75, 739–748.

    Google Scholar 

  • Guedry, F. E., Rupert, A. R., & Reschke, M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Research Bulletin, 47, 475–480.

    PubMed  CrossRef  Google Scholar 

  • Heer, M., & Paloski, W. H. (2006). Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience, 129, 77–79.

    PubMed  CrossRef  Google Scholar 

  • Henriques, I. F., Douglas de Oliveira, D. W., Oliveira-Ferreira, F., & Andrade, P. M. (2014). Motion sickness prevalence in school children. European Journal of Pediatrics, 173, 1473–1482.

    PubMed  CrossRef  Google Scholar 

  • Hettinger, L. J., Kennedy, R. S., & McCauley, M. E. (1990). Motion and human performance. In G. H. Crampton (Ed.), Motion and space sickness (pp. 412–441). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Horing, B., Weimer, K., Schrade, D., et al. (2013). Reduction of motion sickness with an enhanced placebo instruction: An experimental study with healthy participants. Psychosomatic Medicine, 75, 497–504.

    PubMed  CrossRef  Google Scholar 

  • Horn, C. C., Meyers, K., & Oberlies, N. (2014). Musk shrews selectively bred for motion sickness display increased anesthesia-induced vomiting. Physiology & Behavior, 124, 129–137.

    CrossRef  Google Scholar 

  • Hoyt, R. E., Lawson, B. D., McGee, H. A., et al. (2009). Modafinil as a potential motion sickness countermeasure. Aviation, Space and Environmental Medicine, 80, 709–715.

    CrossRef  Google Scholar 

  • Hromatka, B. S., Tung, J. Y., Kiefer, A. K., et al. (2015). Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis. Human Molecular Genetics, 24, 2700–2708.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • International Organisation for Standardization 2631. (1997). International Standard ISO 2631-1:1997(E). Mechanical vibration and shock. Evaluation of human exposure to whole-body vibration. Part 1: General Requirements (2nd Edn.). Corrected and reprinted. Geneva: ISO.

    Google Scholar 

  • Javid, F. A., & Naylor, R. J. (1999). Variables of movement amplitude and frequency in the development of motion sickness in Suncus murinus. Pharmacology, Biochemistry and Behavior, 64, 115–122.

    PubMed  CrossRef  Google Scholar 

  • Johnson, W. H., Sunahara, F. A., & Landolt, J. P. (1999). Importance of the vestibular system in visually induced nausea and self-vection. Journal of Vestibular Research, 9, 83–87.

    PubMed  Google Scholar 

  • Kaufman, G. D. (2005). Fos expression in the vestibular brainstem: What one marker can tell us about the network. Brain Research Reviews, 50, 200–211.

    PubMed  CrossRef  Google Scholar 

  • Kennedy, R. S., & Fowlkes, J. E. (1992). Simulator sickness is polygenic and polysymptomatic: Implications for research. International Journal of Aviation Psychology, 2, 23–38.

    CrossRef  Google Scholar 

  • Kennedy, R. S., Lanham, D. S., Massey, C. J., et al. (1995). Gender differences in simulator sickness incidence: Implications for military virtual reality systems. SAFE Journal, 25, 69–76.

    Google Scholar 

  • Keshavarz, B., & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied Ergonomics, 45, 521–527.

    PubMed  CrossRef  Google Scholar 

  • Keshavarz, B., Hettinger, L., Kennedy, R. S., et al. (2014). Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. Plos One 2014, 9(1–9), e101016.

    Google Scholar 

  • Keshavarz, B., Stelzmann, D., Paillard, A., et al. (2015). Visually induced motion sickness can be alleviated by pleasant odors. Experimental Brain Research, 233, 1353–1364.

    PubMed  CrossRef  Google Scholar 

  • Klosterhalfen, S., Kellermann, S., Pan, F., et al. (2005). Effects of ethnicity and gender on motion sickness susceptibility. Aviation, Space and Environmental Medicine, 76, 1051–1057.

    Google Scholar 

  • Knox, G. W. (2014). Motion sickness: an evolutionary and genetic basis for the negative reinforcement model. Aviation, Space and Environmental Medicine, 85, 46–49.

    CrossRef  Google Scholar 

  • Koch, K. L. (2014). Gastric dysrhythmias: A potential objective measure of nausea. Experimental Brain Research, 232, 2553–2561.

    PubMed  CrossRef  Google Scholar 

  • Lackner, J. R. (2014). Motion sickness: More than nausea and vomiting. Experimental Brain Research, 232, 2493–2510.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lackner, J. R., & Graybiel, A. (1994). Use of promethazine to hasten adaptation to provocative motion. Journal of Clinical Pharmacology, 34, 644–648.

    PubMed  CrossRef  Google Scholar 

  • Lamb, S., Kwok, K. C. S., & Walton, D. (2014). A longitudinal field study of the effects of wind-induced building motion on occupant wellbeing and work performance. Journal of Wind Engineering and Industrial Aerodynamics, 133, 39–51.

    CrossRef  Google Scholar 

  • Lawson, B. D., Graeber, D. A., Mead, A. M., & Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. Chapter 30. In K.M. Stanney (Ed.), Handbook of virtual environments (pp. 589–618). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Lawther, A., & Griffin, M. J. (1988). A survey of the occurrence of motion sickness amongst passengers at sea. Aviation, Space and Environmental Medicine, 59, 399–406.

    Google Scholar 

  • Lentz, J. M. (1984). Laboratory tests of motion sickness susceptibility. In: Motion Sickness: Mechanisms, Prediction, Prevention and Treatment (pp 29–1 to 29–9). AGARD Conference Proceedings No. 372.

    Google Scholar 

  • Levine, M. E., Chillas, J. C., Stern, R. M., et al. (2000). The effects of serotonin (5-HT3) receptor antagonists on gastric tachyarrhythmia and the symptoms of motion sickness. Aviation, Space and Environmental Medicine, 71, 1111–1114.

    Google Scholar 

  • Levine, M. E., Stern, R. M., & Koch, K. L. (2014). Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. Experimental Brain Research, 232, 2675–2684.

    PubMed  CrossRef  Google Scholar 

  • Levine, M. E., Muth, E. R., Williamson, M. J., et al. (2004). Protein-predominant meals inhibit the development of gastric tachyarrhythmia, nausea and the symptoms of motion sickness. Alimentary Pharmacology & Therapeutics, 19, 583–590.

    CrossRef  Google Scholar 

  • Lien, H. C., Sun, W. M., Chen, Y. H., et al. (2003). Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 284, G481–G489.

    PubMed  CrossRef  Google Scholar 

  • Lindseth, G., & Lindseth, P. D. (1995). The relationship of diet to airsickness. Aviation, Space and Environmental Medicine, 66, 537–541.

    Google Scholar 

  • Lubeck, A. J. A., Bos, J. E., & Stins, J. F. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays, 38, 55–61.

    CrossRef  Google Scholar 

  • Lucertini, M., Verde, P., & Trivelloni, P. (2013). Rehabilitation from airsickness in military pilots: Long-term treatment effectiveness. Aviation, Space and Environmental Medicine, 84, 1196–1200.

    CrossRef  Google Scholar 

  • Matsangas, P., & McCauley, M. E. (2014). Yawning as a behavioral marker of mild motion sickness and sopite syndrome. Aviation, Space and Environmental Medicine, 85, 658–661.

    CrossRef  Google Scholar 

  • Miller, K. E., & Muth, E. R. (2004). Efficacy of acupressure and acustimulation bands for the prevention of motion sickness. Aviation, Space and Environmental Medicine, 75, 227–234.

    Google Scholar 

  • Money, K. E., & Cheung, B. S. (1983). Another function of the inner ear: Facilitation of the emetic response to poisons. Aviation, Space and Environmental Medicine, 54, 208–211.

    Google Scholar 

  • Morrow, G. R. (1985). The effect of a susceptibility to motion sickness on the side effects of cancer chemotherapy. Cancer, 55, 2766–2770.

    PubMed  CrossRef  Google Scholar 

  • Murdin, L., Golding, J., & Bronstein, A. (2011). Managing motion sickness. British Medical Journal, 343, 1213–1217.

    CrossRef  Google Scholar 

  • Murdin, L., Chamberlain, F., Cheema, S., et al. (2015). Motion sickness susceptibility in vestibular disease. Journal of Neurology, Neurosurgery and Psychiatry, 86, 585–587.

    PubMed  CrossRef  Google Scholar 

  • Nachum, Z., Shahal, B., Shupak, A., et al. (2001). Scopolamine bioavailability in combined oral and transdermal delivery. Journal of Pharmacology and Experimental Therapeutics, 296, 121–123.

    PubMed  Google Scholar 

  • Nachum, Z., Shupak, A., Letichevsky, V., et al. (2004). Mal de debarquement and posture: Reduced reliance on vestibular and visual cues. Laryngoscope, 114, 1581–6.

    CrossRef  Google Scholar 

  • Nalivaiko, E., Rudd, J. A., & So, R. H. Y. (2014). Motion sickness, nausea and thermoregulation: The “toxic” hypothesis. Temperature, 1(3), 164–171.

    CrossRef  Google Scholar 

  • Nakagawa, A., Uno, A., Horii, A., et al. (2003). Fos induction in the amygdala by vestibular information during hypergravity stimulation. Brain Research, 986, 114–123.

    PubMed  CrossRef  Google Scholar 

  • Napadow, V., Sheehan, J. D., Kim, J., et al. (2013a). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23, 806–813.

    PubMed  CrossRef  Google Scholar 

  • Napadow, V., Sheehan, J., Kim, J., et al. (2013b). Brain white matter microstructure is associated with susceptibility to motion-induced nausea. Journal of Neurogastroenterology and Motility, 25, 448–450.

    CrossRef  Google Scholar 

  • Naqvi, S. A., Badruddin, N., Malik, A. S., Hazabbah, W., & Abdullah, B. (2013). Does 3D produce more symptoms of visually induced motion sickness? Conference Proceedings IEEE Engineering in Medicine and Biology Society (pp. 6405–6408).

    Google Scholar 

  • Nunn, P. W. G. (1881). Seasickness, its causes and treatment. Lancet ii, 1151–1152.

    Google Scholar 

  • O’Hanlon, J. F., & McCauley, M. E. (1974). Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aviation, Space and Environmental Medicine, 45, 366–369.

    Google Scholar 

  • Oman, C. M. (1990). Motion sickness: A synthesis and evaluation of the sensory conflict theory. Comparative Biochemistry and Physiology, 68, 294–303.

    Google Scholar 

  • Oman, C. M. (2012). Are evolutionary hypotheses for motion sickness “just-so” stories? Journal of Vestibular Research, 22, 117–127.

    PubMed  Google Scholar 

  • Oman, C. M., & Cullen, K. E. (2014). Brainstem processing of vestibular sensory exafference: Implications for motion sickness etiology. Experimental Brain Research, 232, 2483–2492.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Paillard, A. C., Quarck, G., Paolino, F., et al. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. Journal of Vestibular Research, 23, 203–210.

    PubMed  Google Scholar 

  • Paillard, A. C., Lamôré, M., Etard, O., et al. (2014). Is there a relationship between odours and motion sickness? Neuroscience Letters, 566, 326–30.

    PubMed  CrossRef  Google Scholar 

  • Palatty, P. L., Haniadka, R., Valder, B., et al. (2013). Ginger in the prevention of nausea and vomiting: A review. Critical Reviews in Food Science and Nutrition, 53, 659–669.

    PubMed  CrossRef  Google Scholar 

  • Perrin, P., Lion, A., Bosser, G., et al. (2013). Motion sickness in rally car co-drivers. Aviation, Space and Environmental Medicine, 84, 473–477.

    CrossRef  Google Scholar 

  • Pethybridge, R. J. (1982). Sea sickness incidence in Royal Navy ships. (Report No. INM 37/82). Gosport, England: Institute of Naval Medicine.

    Google Scholar 

  • Pompeiano, O., d’Ascanio, P., Balaban, E., et al. (2004). Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience, 124, 153–69.

    CrossRef  Google Scholar 

  • Radtke, A., Popov, K., Bronstein, A. M., et al. (2003). Vestibular-autonomic control in man: short- and long-latency effects on cardiovascular function. Journal of Vestibular Research, 13, 25–37.

    PubMed  Google Scholar 

  • Reason, J. T., & Brand, J. J. (1975). Motion sickness. London: Academic Press.

    Google Scholar 

  • Reavley, C. M., Golding, J. F., Cherkas, L. F., et al. (2006). Genetic influences on motion sickness susceptibility in adult females: A classical twin study. Aviation, Space and Environmental Medicine, 77, 1148–1152.

    Google Scholar 

  • Ressiot, E., Dolz, M., Bonne, L., & Marianowski, R. (2013). Prospective study on the efficacy of optokinetic training in the treatment of sea sickness. European Annals of Otorhinolaryngology, Head and Neck Diseases, 130, 263–268.

    PubMed  CrossRef  Google Scholar 

  • Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology Journal, 3, 195–240.

    CrossRef  Google Scholar 

  • Rolnick, A., & Lubow, R. E. (1991). Why is the driver rarely sick? The role of controllability in motion sickness. Ergonomics, 34, 867–879.

    PubMed  CrossRef  Google Scholar 

  • Schaub, N., Ng, K., Kuo, P., et al. (2014). Gastric and lower esophageal sphincter pressures during nausea: A study using visual motion-induced nausea and high-resolution manometry. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G741–G747.

    PubMed  CrossRef  Google Scholar 

  • Schelgel, T. T., Brown, T. E., Wood, S. J., et al. (2001). Orthostatic intolerance and motion sickness after parabolic flight. Journal of Applied Physiology, 90, 67–82.

    Google Scholar 

  • Schutz, L., Zak, D., & Holmes, J. F. (2014). Pattern of passenger injury and illness on expedition cruise ships to Antarctica. Journal of Travel Medicine, 21, 228–234.

    PubMed  CrossRef  Google Scholar 

  • Seibel, K., Schaffler, K., & Reitmeir, P. (2002). A randomised, placebo-controlled study comparing two formulations of dimenhydrinate with respect to efficacy in motion sickness and sedation. Arzneimittel-Forschung, 52, 529–536.

    PubMed  Google Scholar 

  • Serrador, J. M., Schlegel, T. T., Black, F. O., et al. (2005). Cerebral hypoperfusion precedes nausea during centrifugation. Aviation, Space and Environmental Medicine, 76, 91–96.

    Google Scholar 

  • Sharma, K., Sharma, P., Sharma, A., et al. (2008). Phenylthiocarbamide taste perception and susceptibility to motion sickness: Linking higher susceptibility with higher phenylthiocarbamide taste acuity. Journal of Laryngology and Otology, 122, 1064–1073.

    PubMed  Google Scholar 

  • Sharon, J. D., & Hullar, T. E. (2014). Motion sensitivity and caloric responsiveness in vestibular migraine and Meniere’s disease. Laryngoscope, 124, 969–973.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Simmons, R. G., Phillips, J. B., Lojewski, R. A., et al. (2010). The efficacy of low-dose intranasal scopolamine for motion sickness. Aviation, Space and Environmental Medicine, 81, 405–412.

    CrossRef  Google Scholar 

  • Solimini, A. G. (2013). Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS One. 8(2), e56160. doi: 10.1371/journal.pone.0056160. [Epub 2013 Feb 13]

  • Stern, R. M., Koch, K. L., Leibowitz, H. W., et al. (1985). Tachygastria and motion sickness. Aviation, Space and Environmental Medicine, 56, 1074–1077.

    Google Scholar 

  • Stern, R. M., Hu, S., LeBlanc, R., et al. (1993). Chinese hyper-susceptibility to vection-induced motion sickness. Aviation, Space and Environmental Medicine, 64, 827–830.

    Google Scholar 

  • Stewart, J. J., Wood, M. J., Parish, R. C., et al. (2000). Prokinetic effects of erythromycin after antimotion sickness drugs. Journal of Clinical Pharmacology, 40, 347–353.

    PubMed  CrossRef  Google Scholar 

  • Stoffregen, T. A., Chen, Y. C., & Koslucher, F. C. (2014). Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research, 232, 1389–1397.

    PubMed  CrossRef  Google Scholar 

  • Stoffregen, T. A., Chen, F. C., Varlet, M., et al. (2013). 2013. Getting Your Sea Legs. PLoS One., 8(6), e66949.

    PubMed  CrossRef  Google Scholar 

  • Stott, J. R. R. (1986). Mechanisms and treatment of motion illness. In C. J. Davis, G. V. Lake-Bakaar, & D. G. Grahame-Smith (Eds.), Nausea and vomiting: mechanisms and treatment (pp. 110–129). Berlin: Springer.

    CrossRef  Google Scholar 

  • Stromberg, S. E., Russell, M. E., & Carlson, C. R. (2015). Diaphragmatic breathing and its effectiveness for the management of motion sickness. Aerospace Medicine and Human Performance, 86, 452–457.

    PubMed  CrossRef  Google Scholar 

  • Stroud, K. J., Harm, D. L., & Klaus, D. M. (2005). Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviation, Space and Environmental Medicine, 76, 352–356.

    Google Scholar 

  • Tal, D., Hershkovitz, D., Kaminski-Graif, G., et al. (2013). Vestibular evoked myogenic potentials and habituation to seasickness. Clinical Neurophysiology, 124, 2445–2449.

    PubMed  CrossRef  Google Scholar 

  • Tal, D., Wiener, G., & Shupak, A. (2014). Mal de debarquement, motion sickness and the effect of an artificial horizon. Journal of Vestibular Research, 24, 17–23.

    PubMed  Google Scholar 

  • Thornton, W. E., & Bonato, F. (2013). Space motion sickness and motion sickness: Symptoms and etiology. Aviation, Space and Environmental Medicine, 84, 716–721.

    CrossRef  Google Scholar 

  • Treisman, M. (1977). Motion sickness: An evolutionary hypothesis. Science, 197, 493–495.

    PubMed  CrossRef  Google Scholar 

  • Turner, M., & Griffin, M. J. (1999a). Motion sickness in public road transport: Passenger behaviour and susceptibility. Ergonomics, 42, 444–461.

    PubMed  CrossRef  Google Scholar 

  • Turner, M., & Griffin, M. J. (1999b). Motion sickness in public road transport: the relative importance of motion, vision and individual differences. British Journal of Psychology, 90, 519–530.

    PubMed  CrossRef  Google Scholar 

  • van Marion, W. F., Bongaerts, M. C., Christiaanse, J. C., et al. (1985). Influence of transdermal scopolamine on motion sickness during 7 days’ exposure to heavy seas. Clinical Pharmacology and Therapeutics, 38, 301–305.

    PubMed  CrossRef  Google Scholar 

  • Von Gierke, H. E., & Parker, D. E. (1994). Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviation, Space and Environmental Medicine, 65, 747–751.

    Google Scholar 

  • Wada, T., Konno, H., Fujisawa, S., et al. (2012). Can passengers’ active head tilt decrease the severity of carsickness? Effect of head tilt on severity of motion sickness in a lateral acceleration environment. Human Factors, 54, 226–234.

    PubMed  CrossRef  Google Scholar 

  • Webb, C. M., Estrada, A., & Athy, J. R. (2013). Motion sickness prevention by an 8-Hz stroboscopic environment during air transport. Aviation, Space and Environmental Medicine, 84, 177–183.

    CrossRef  Google Scholar 

  • Whittle, J. (1689) An exact diary of the late expedition of His Illustrious Highness the Prince of Orange, 1689. In: J. Pike (Ed.) (1986). Tall Ships in Torbay a Brief Maritime History (p. 35). Bradford on Avon, UK: Ex Libris Press.

    Google Scholar 

  • Wood, C. D., & Graybiel, A. (1969). Evaluation of 16 antimotion sickness drugs under controlled laboratory conditions. Aerospace Medicine, 39, 1341–1344.

    Google Scholar 

  • Wood, C. D., Manno, J. E., Manno, B. R., et al. (1986). The effect of anti-motion sickness drugs on habituation to motion. Aviation, Space and Environmental Medicine, 57, 539–542.

    Google Scholar 

  • Yates, B. J., Miller, A. D., & Lucot, J. B. (1998). Physiological basis and pharmacology of motion sickness: an update. Brain Research Bulletin, 47, 395–406.

    PubMed  CrossRef  Google Scholar 

  • Yates, B. J., Catanzaro, M. F., Miller, D. J., et al. (2014). Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: Potential contributions to motion sickness. Experimental Brain Research, 232, 2455–2469.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yen-Pik-Sang, F., Billar, J. P., Golding, J. F., et al. (2003a). Behavioral methods of alleviating motion sickness: Effectiveness of controlled breathing and music audiotape. Journal of Travel Medicine, 10, 108–112.

    PubMed  CrossRef  Google Scholar 

  • Yen-Pik-Sang, F., Golding, J. F., & Gresty, M. A. (2003b). Suppression of sickness by controlled breathing during mild nauseogenic motion. Aviation, Space and Environmental Medicine, 74, 998–1002.

    Google Scholar 

  • Yen-Pik-Sang, F., Billar, J., Gresty, M. A., et al. (2005). Effect of a novel motion desensitization training regime and controlled breathing on habituation to motion sickness. Perceptual and Motor Skills, 101, 244–256.

    PubMed  CrossRef  Google Scholar 

  • Young, L. R., Sienko, K. H., Lyne, L. E., et al. (2003). Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation. Journal of Vestibular Research, 13, 65–77.

    PubMed  Google Scholar 

  • Ziavra, N. V., Yen-Pik-Sang, F. D., Golding, J. F., et al. (2003). Effect of breathing supplemental oxygen on motion sickness in healthy adults. Mayo Clinic Proceedings, 78, 574–578.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Golding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Golding, J.F. (2017). Motion Sickness Susceptibility and Management at Sea. In: MacLachlan, M. (eds) Maritime Psychology. Springer, Cham. https://doi.org/10.1007/978-3-319-45430-6_7

Download citation