Motion Sickness Susceptibility and Management at Sea



Seasickness has been noted from the earliest times. Over 2000 years ago the Greek physician Hippocrates wrote, ‘… sailing on the sea proves that motion disorders the body …’ The word ‘Nausea’ derives from the Greek root word ‘naus’, hence ‘nautical’ referring to ships. Motion sickness can be provoked by a wide variety of transport environments, including sea, land, air and space and in addition may be induced by some types of visual stimuli. This chapter describes the signs and symptoms of motion sickness, the possible effects on human performance and the different types of provocative stimuli. The mechanism for motion sickness is generally accepted to involve sensory conflict, for which the evidence is reviewed. But what reason or purpose does motion sickness serve a purpose, if any? This ‘why’ of motion sickness is analyzed from both evolutionary and non-functional mal-adaptive theoretical perspectives. Individual differences in susceptibility are great and so predictors for susceptiblity are reviewed. Finally the effectiveness of behavioural and pharmacological countermeasures are evaluated.


Motion sickness Seasickness Nausea Sopite Cognition Performance Vestibular Vibration Motion sickness susceptibility Habituation Scopolamine 


  1. Ahmed, S., Sileno, A. P., deMeireles, J. C., et al. (2000). Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects. Pharmaceutical Research, 17, 974–977.PubMedCrossRefGoogle Scholar
  2. Arshad, Q., Cerchiai, N., Goga, U., et al. (2015). Electro-cortical therapy for motion sickness. Neurology Sep 4. pii:  10.1212/WNL.0000000000001989. [Epub ahead of print]
  3. Balaban, C. D. (1999). Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting). Current Opinion in Neurology, 12, 29–33.PubMedCrossRefGoogle Scholar
  4. Balaban, C. D., Ogburn, S. W., Warshafsky, S. G., et al. (2014). Identification of neural networks that contribute to motion sickness through principal components analysis of fos labelling induced by galvanic vestibular stimulation. PLoS ONE, 9(1), e86730. doi: 10.1371/journal.pone.0086730 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baloh, R. W. (1998). Advances in neuro-otology. Current Opinion in Neurology, 11, 1–3.PubMedCrossRefGoogle Scholar
  6. Benson, A. J. (1999). Motion sickness. In J. Ernsting, A. N. Nicholson, & D. S. Rainford (Eds.), Aviation medicine (pp. 318–338). Oxford, UK: Butterworth Ltd.Google Scholar
  7. Benson, A. J. (2002). Motion sickness. In K. Pandolf & R. Burr (Eds.), Medical aspects of harsh environments (Vol. 2, pp. 1060–1094). Washington, DC: Walter Reed Army Medical Center.Google Scholar
  8. Benson, P. W., Hooker, J. B., Koch, K. L., et al. (2012). Bitter taster status predicts susceptibility to vection-induced motion sickness and nausea. Journal of Neurogastroenterology and Motility, 24, 134–140.CrossRefGoogle Scholar
  9. Bertalanffy, P., Hoerauf, K., Fleischhackl, R., et al. (2004). Korean hand acupressure for motion sickness in prehospital trauma care: A prospective, randomized, double-blinded trial in a geriatric population. Anesthesia and Analgesia, 98, 220–223.PubMedCrossRefGoogle Scholar
  10. Bijveld, M. M., Bronstein, A. M., Golding, J. F., et al. (2008). Nauseogenicity of off-vertical-axis rotation versus equivalent visual motion. Aviation, Space and Environmental Medicine, 79, 661–665.CrossRefGoogle Scholar
  11. Boldingh, M. I., Ljostad, U., Mygland, A., et al. (2011). Vestibular sensitivity in vestibular migraine: VEMPs and motion sickness susceptibility. Cephalalgia, 31, 1211–1219.PubMedCrossRefGoogle Scholar
  12. Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. Journal of Vestibular Research, 25, 23–33.PubMedCrossRefGoogle Scholar
  13. Bos, J. E., & Bles, W. (1998). Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Research Bulletin, 47, 537–542.PubMedCrossRefGoogle Scholar
  14. Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviation, Space and Environmental Medicine, 76, 1111–1118.Google Scholar
  15. Bos, J. E., Ledegang, W. D., Lubeck, A. J., et al. (2013). Cinerama sickness and postural instability. Ergonomics, 56, 1430–1436.PubMedCrossRefGoogle Scholar
  16. Bosser, G., Caillet, G., Gauchard, G., et al. (2006). Relation between motion sickness susceptibility and vasovagal syncope susceptibility. Brain Research Bulletin, 68, 217–226.PubMedCrossRefGoogle Scholar
  17. Bowins, B. (2010). Motion sickness: A negative reinforcement model. Brain Research Bulletin, 81, 7–11.PubMedCrossRefGoogle Scholar
  18. Brey, R. L. (2005). Both migraine and motion sickness may be due to low brain levels of serotonin. Neurology, 65(4), E9–E10.PubMedCrossRefGoogle Scholar
  19. Bruce, D. G., Golding, J. F., & Pethybridge, R. J. (1990). Acupressure and motion sickness. Aviation, Space and Environmental Medicine, 61, 361–365.Google Scholar
  20. Bubka, A., Bonato, F., Urmey, S., et al. (2006). Rotation velocity change and motion sickness in an optokinetic drum. Aviation, Space and Environmental Medicine, 77, 811–815.Google Scholar
  21. Cevette, M. J., Stepanek, J., Cocco, D., et al. (2012). Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness. Aviation, Space and Environmental Medicine, 83, 549–555.CrossRefGoogle Scholar
  22. Cha, Y. H. (2009). Mal de debarquement. Seminars in Neurology, 29, 520–527.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cha, Y. H., Cui, Y., & Baloh, R. W. (2013). Repetitive transcranial magnetic stimulation for mal de debarquement syndrome. Otology & Neurotology, 34, 175–179.CrossRefGoogle Scholar
  24. Chang, C. H., Pan, W. W., Chen, F. C., et al. (2013). Console video games, postural activity, and motion sickness during passive restraint. Experimental Brain Research, 229, 235–242.PubMedCrossRefGoogle Scholar
  25. Cheung, B., & Hofer, K. (2005). Desensitization to strong vestibular stimuli improves tolerance to simulated aircraft motion. Aviation, Space and Environmental Medicine, 76, 1099–1104.Google Scholar
  26. Cheung, B., Nakashima, A. M., & Hofer, K. D. (2011). Various anti-motion sickness drugs and core body temperature changes. Aviation, Space and Environmental Medicine, 82, 409–415.CrossRefGoogle Scholar
  27. Cheung, B. S. K., Money, K. E., & Jacobs, I. (1990). Motion sickness susceptibility and aerobic fitness: A longitudinal study. Aviation, Space and Environmental Medicine, 61, 201–204.Google Scholar
  28. Claremont, C. A. (1931). The psychology of sea-sickness. Psyche, 11, 86–90.Google Scholar
  29. Clark, B. C., LePorte, A., Clark, S., et al. (2013). Effects of persistent Mal de debarquement syndrome on balance, psychological traits, and motor cortex excitability. Journal of Clinical Neuroscience, 20, 446–450.PubMedCrossRefGoogle Scholar
  30. Cohen, B., Dai, M., Yakushin, S. B., et al. (2008). Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Progress in Brain Research, 171, 543–553.PubMedCrossRefGoogle Scholar
  31. Cowings, P. S., & Toscano, W. B. (2000). Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. Journal of Clinical Pharmacology, 40, 1154–1165.PubMedGoogle Scholar
  32. Cuomo-Granston, A., & Drummond, P. D. (2010). Migraine and motion sickness: What is the link? Progress in Neurobiology, 91, 300–312.PubMedCrossRefGoogle Scholar
  33. Dai, M., Raphan, T., & Cohen, B. (2011). Prolonged reduction of motion sickness sensitivity by visual-vestibular interaction. Experimental Brain Research, 210, 503–513.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Diamond, S. G., & Markham, C. H. (1991). Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviation, Space and Environmental Medicine, 62, 201–205.Google Scholar
  35. Diels, C., & Howarth, P. A. (2013). Frequency characteristics of visually induced motion sickness. Human Factors, 55, 595–604.PubMedCrossRefGoogle Scholar
  36. Dobie, T., McBride, D., Dobie, T., Jr., et al. (2001). The effects of age and sex on susceptibility to motion sickness. Aviation, Space and Environmental Medicine, 72, 13–20.Google Scholar
  37. Drummond, P. D. (2005). Effect of tryptophan depletion on symptoms of motion sickness in migraineurs. Neurology, 65, 620–2.PubMedCrossRefGoogle Scholar
  38. Eversmann, T., Gottsmann, M., Uhlich, E., et al. (1978). Increased secretion of growth hormone, prolactin, antidiuretic hormone and cortisol induced by the stress of motion sickness. Aviation, Space and Environmental Medicine, 49, 55.Google Scholar
  39. Farmer, A. D., Al Omran, Y., Aziz, Q., et al. (2014). The role of the parasympathetic nervous system in visually induced motion sickness: Systematic review and meta-analysis. Experimental Brain Research, 232, 2665–2673.PubMedCrossRefGoogle Scholar
  40. Finley, J. C., Jr., O’Leary, M., Wester, D., et al. (2004). A genetic polymorphism of the alpha2-adrenergic receptor increases autonomic responses to stress. Journal of Applied Physiology, 96, 2231–2239.PubMedCrossRefGoogle Scholar
  41. Flanagan, M. B., May, J. G., & Dobie, T. G. (2005). Sex differences in tolerance to visually-induced motion sickness. Aviation, Space and Environmental Medicine, 76, 642–646.Google Scholar
  42. Furman, J. M., Marcus, D. A., & Balaban, C. D. (2011). Rizatriptan reduces vestibular-induced motion sickness in migraineurs. Journal of Headache and Pain, 12, 81–88.PubMedCrossRefGoogle Scholar
  43. Gahlinger, P. M. (2000). Cabin location and the likelihood of motion sickness in cruise ship passengers. Journal of Travel Medicine, 7, 120–124.PubMedCrossRefGoogle Scholar
  44. Gil, A., Nachum, Z., Dachir, S., et al. (2005). Scopolamine patch to prevent seasickness: clinical response vs. plasma concentration in sailors. Aviation, Space and Environmental Medicine, 76, 766–770.Google Scholar
  45. Golding, J. F. (1992). Phasic skin conductance activity and motion sickness. Aviation, Space and Environmental Medicine, 63, 165–171.Google Scholar
  46. Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. The Brain Research Bulletin, 47, 507–516.PubMedCrossRefGoogle Scholar
  47. Golding, J. F. (2006a). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual Differences, 41, 237–248.CrossRefGoogle Scholar
  48. Golding, J. F. (2006b). motion sickness susceptibility. Autonomic Neuroscience, 30, 67–76.CrossRefGoogle Scholar
  49. Golding, J. F., & Gresty, M. A. (2005). Motion sickness. Current Opinion in Neurology, 18, 29–34.PubMedCrossRefGoogle Scholar
  50. Golding, J. F., & Gresty, M. A. (2016). Biodynamic hypothesis for the frequency tuning of motion sickness. Aerospace Medicine & Human Performance, 87(1), 65–68.CrossRefGoogle Scholar
  51. Golding, J. F., Markey, H. M., & Stott, J. R. R. (1995). The effects of motion direction, body axis, and posture, on motion sickness induced by low frequency linear oscillation. Aviation, Space and Environmental Medicine, 66, 1046–1051.Google Scholar
  52. Golding, J. F., Mueller, A. G., & Gresty, M. A. (2001). A motion sickness maximum around 0.2 Hz frequency range of horizontal translational oscillation. Aviation, Space and Environmental Medicine, 72, 188–192.Google Scholar
  53. Golding, J. F., Kadzere, P. N., & Gresty, M. A. (2005). Motion sickness susceptibility fluctuates through the menstrual cycle. Aviation, Space and Environmental Medicine, 76, 970–973.Google Scholar
  54. Golding, J. F., Paillard, A. C., & Denise, P. (2015). Motion sickness in zero-g parabolic flights. Aerospace Medicine and Human Performance, 86, 159.Google Scholar
  55. Golding, J. F., & Stott, J. R. R. (1997a). Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. Journal of Vestibular Research, 7, 421–428.PubMedCrossRefGoogle Scholar
  56. Golding, J. F., & Stott, J. R. R. (1997b). Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. British Journal of Clinical Pharmacology, 43, 633–637.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Golding, J. F., & Tayyaba, S. A. (2014). Does motion sickness susceptibility relate to visceral disgust and bitter taste sensitivity? Aviation, Space and Environmental Medicine, 85, 344.Google Scholar
  58. Golding, J. F., Bles, W., Bos, J. E., et al. (2003). Motion sickness and tilts of the inertial force environment: Active suspension systems versus active passengers. Aviation, Space and Environmental Medicine, 74, 220–227.Google Scholar
  59. Golding, J. F., Prosyanikova, O., Flynn, M., et al. (2011). The effect of smoking nicotine tobacco versus smoking deprivation on motion sickness. Autonomic Neuroscience: Basic and Clinical, 160, 53–58.CrossRefGoogle Scholar
  60. Gordon, C. R., Ben-Aryeh, H., Spitzer, O., et al. (1994). Seasickness susceptibility, personality factors, and salivation. Aviation, Space and Environmental Medicine, 65, 610–614.Google Scholar
  61. Gordon, C. R., Gonen, A., Nachum, Z., et al. (2001). The effects of dimenhydrinate, cinnarizine and transdermal scopolamine on performance. Journal of Psychopharmacology, 15, 167–172.PubMedCrossRefGoogle Scholar
  62. Graybiel, A. (1970). Susceptibility to acute motion sickness in blind persons. Aerospace Medicine, 41, 650–653.PubMedGoogle Scholar
  63. Gresty, M. A., & Golding, J. F. (2009). Impact of vertigo and spatial disorientation on concurrent cognitive tasks. Annals of the New York Academy of Sciences Journal, 1164, 263–267.CrossRefGoogle Scholar
  64. Griffin, M. J., & Newman, M. M. (2004). Visual field effects on motion sickness in cars. Aviation, Space and Environmental Medicine, 75, 739–748.Google Scholar
  65. Guedry, F. E., Rupert, A. R., & Reschke, M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Research Bulletin, 47, 475–480.PubMedCrossRefGoogle Scholar
  66. Heer, M., & Paloski, W. H. (2006). Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience, 129, 77–79.PubMedCrossRefGoogle Scholar
  67. Henriques, I. F., Douglas de Oliveira, D. W., Oliveira-Ferreira, F., & Andrade, P. M. (2014). Motion sickness prevalence in school children. European Journal of Pediatrics, 173, 1473–1482.PubMedCrossRefGoogle Scholar
  68. Hettinger, L. J., Kennedy, R. S., & McCauley, M. E. (1990). Motion and human performance. In G. H. Crampton (Ed.), Motion and space sickness (pp. 412–441). Boca Raton, FL: CRC Press.Google Scholar
  69. Horing, B., Weimer, K., Schrade, D., et al. (2013). Reduction of motion sickness with an enhanced placebo instruction: An experimental study with healthy participants. Psychosomatic Medicine, 75, 497–504.PubMedCrossRefGoogle Scholar
  70. Horn, C. C., Meyers, K., & Oberlies, N. (2014). Musk shrews selectively bred for motion sickness display increased anesthesia-induced vomiting. Physiology & Behavior, 124, 129–137.CrossRefGoogle Scholar
  71. Hoyt, R. E., Lawson, B. D., McGee, H. A., et al. (2009). Modafinil as a potential motion sickness countermeasure. Aviation, Space and Environmental Medicine, 80, 709–715.CrossRefGoogle Scholar
  72. Hromatka, B. S., Tung, J. Y., Kiefer, A. K., et al. (2015). Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis. Human Molecular Genetics, 24, 2700–2708.PubMedPubMedCentralCrossRefGoogle Scholar
  73. International Organisation for Standardization 2631. (1997). International Standard ISO 2631-1:1997(E). Mechanical vibration and shock. Evaluation of human exposure to whole-body vibration. Part 1: General Requirements (2nd Edn.). Corrected and reprinted. Geneva: ISO.Google Scholar
  74. Javid, F. A., & Naylor, R. J. (1999). Variables of movement amplitude and frequency in the development of motion sickness in Suncus murinus. Pharmacology, Biochemistry and Behavior, 64, 115–122.PubMedCrossRefGoogle Scholar
  75. Johnson, W. H., Sunahara, F. A., & Landolt, J. P. (1999). Importance of the vestibular system in visually induced nausea and self-vection. Journal of Vestibular Research, 9, 83–87.PubMedGoogle Scholar
  76. Kaufman, G. D. (2005). Fos expression in the vestibular brainstem: What one marker can tell us about the network. Brain Research Reviews, 50, 200–211.PubMedCrossRefGoogle Scholar
  77. Kennedy, R. S., & Fowlkes, J. E. (1992). Simulator sickness is polygenic and polysymptomatic: Implications for research. International Journal of Aviation Psychology, 2, 23–38.CrossRefGoogle Scholar
  78. Kennedy, R. S., Lanham, D. S., Massey, C. J., et al. (1995). Gender differences in simulator sickness incidence: Implications for military virtual reality systems. SAFE Journal, 25, 69–76.Google Scholar
  79. Keshavarz, B., & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied Ergonomics, 45, 521–527.PubMedCrossRefGoogle Scholar
  80. Keshavarz, B., Hettinger, L., Kennedy, R. S., et al. (2014). Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness. Plos One 2014, 9(1–9), e101016.Google Scholar
  81. Keshavarz, B., Stelzmann, D., Paillard, A., et al. (2015). Visually induced motion sickness can be alleviated by pleasant odors. Experimental Brain Research, 233, 1353–1364.PubMedCrossRefGoogle Scholar
  82. Klosterhalfen, S., Kellermann, S., Pan, F., et al. (2005). Effects of ethnicity and gender on motion sickness susceptibility. Aviation, Space and Environmental Medicine, 76, 1051–1057.Google Scholar
  83. Knox, G. W. (2014). Motion sickness: an evolutionary and genetic basis for the negative reinforcement model. Aviation, Space and Environmental Medicine, 85, 46–49.CrossRefGoogle Scholar
  84. Koch, K. L. (2014). Gastric dysrhythmias: A potential objective measure of nausea. Experimental Brain Research, 232, 2553–2561.PubMedCrossRefGoogle Scholar
  85. Lackner, J. R. (2014). Motion sickness: More than nausea and vomiting. Experimental Brain Research, 232, 2493–2510.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lackner, J. R., & Graybiel, A. (1994). Use of promethazine to hasten adaptation to provocative motion. Journal of Clinical Pharmacology, 34, 644–648.PubMedCrossRefGoogle Scholar
  87. Lamb, S., Kwok, K. C. S., & Walton, D. (2014). A longitudinal field study of the effects of wind-induced building motion on occupant wellbeing and work performance. Journal of Wind Engineering and Industrial Aerodynamics, 133, 39–51.CrossRefGoogle Scholar
  88. Lawson, B. D., Graeber, D. A., Mead, A. M., & Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. Chapter 30. In K.M. Stanney (Ed.), Handbook of virtual environments (pp. 589–618). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  89. Lawther, A., & Griffin, M. J. (1988). A survey of the occurrence of motion sickness amongst passengers at sea. Aviation, Space and Environmental Medicine, 59, 399–406.Google Scholar
  90. Lentz, J. M. (1984). Laboratory tests of motion sickness susceptibility. In: Motion Sickness: Mechanisms, Prediction, Prevention and Treatment (pp 29–1 to 29–9). AGARD Conference Proceedings No. 372.Google Scholar
  91. Levine, M. E., Chillas, J. C., Stern, R. M., et al. (2000). The effects of serotonin (5-HT3) receptor antagonists on gastric tachyarrhythmia and the symptoms of motion sickness. Aviation, Space and Environmental Medicine, 71, 1111–1114.Google Scholar
  92. Levine, M. E., Stern, R. M., & Koch, K. L. (2014). Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. Experimental Brain Research, 232, 2675–2684.PubMedCrossRefGoogle Scholar
  93. Levine, M. E., Muth, E. R., Williamson, M. J., et al. (2004). Protein-predominant meals inhibit the development of gastric tachyarrhythmia, nausea and the symptoms of motion sickness. Alimentary Pharmacology & Therapeutics, 19, 583–590.CrossRefGoogle Scholar
  94. Lien, H. C., Sun, W. M., Chen, Y. H., et al. (2003). Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 284, G481–G489.PubMedCrossRefGoogle Scholar
  95. Lindseth, G., & Lindseth, P. D. (1995). The relationship of diet to airsickness. Aviation, Space and Environmental Medicine, 66, 537–541.Google Scholar
  96. Lubeck, A. J. A., Bos, J. E., & Stins, J. F. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays, 38, 55–61.CrossRefGoogle Scholar
  97. Lucertini, M., Verde, P., & Trivelloni, P. (2013). Rehabilitation from airsickness in military pilots: Long-term treatment effectiveness. Aviation, Space and Environmental Medicine, 84, 1196–1200.CrossRefGoogle Scholar
  98. Matsangas, P., & McCauley, M. E. (2014). Yawning as a behavioral marker of mild motion sickness and sopite syndrome. Aviation, Space and Environmental Medicine, 85, 658–661.CrossRefGoogle Scholar
  99. Miller, K. E., & Muth, E. R. (2004). Efficacy of acupressure and acustimulation bands for the prevention of motion sickness. Aviation, Space and Environmental Medicine, 75, 227–234.Google Scholar
  100. Money, K. E., & Cheung, B. S. (1983). Another function of the inner ear: Facilitation of the emetic response to poisons. Aviation, Space and Environmental Medicine, 54, 208–211.Google Scholar
  101. Morrow, G. R. (1985). The effect of a susceptibility to motion sickness on the side effects of cancer chemotherapy. Cancer, 55, 2766–2770.PubMedCrossRefGoogle Scholar
  102. Murdin, L., Golding, J., & Bronstein, A. (2011). Managing motion sickness. British Medical Journal, 343, 1213–1217.CrossRefGoogle Scholar
  103. Murdin, L., Chamberlain, F., Cheema, S., et al. (2015). Motion sickness susceptibility in vestibular disease. Journal of Neurology, Neurosurgery and Psychiatry, 86, 585–587.PubMedCrossRefGoogle Scholar
  104. Nachum, Z., Shahal, B., Shupak, A., et al. (2001). Scopolamine bioavailability in combined oral and transdermal delivery. Journal of Pharmacology and Experimental Therapeutics, 296, 121–123.PubMedGoogle Scholar
  105. Nachum, Z., Shupak, A., Letichevsky, V., et al. (2004). Mal de debarquement and posture: Reduced reliance on vestibular and visual cues. Laryngoscope, 114, 1581–6.CrossRefGoogle Scholar
  106. Nalivaiko, E., Rudd, J. A., & So, R. H. Y. (2014). Motion sickness, nausea and thermoregulation: The “toxic” hypothesis. Temperature, 1(3), 164–171.CrossRefGoogle Scholar
  107. Nakagawa, A., Uno, A., Horii, A., et al. (2003). Fos induction in the amygdala by vestibular information during hypergravity stimulation. Brain Research, 986, 114–123.PubMedCrossRefGoogle Scholar
  108. Napadow, V., Sheehan, J. D., Kim, J., et al. (2013a). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23, 806–813.PubMedCrossRefGoogle Scholar
  109. Napadow, V., Sheehan, J., Kim, J., et al. (2013b). Brain white matter microstructure is associated with susceptibility to motion-induced nausea. Journal of Neurogastroenterology and Motility, 25, 448–450.CrossRefGoogle Scholar
  110. Naqvi, S. A., Badruddin, N., Malik, A. S., Hazabbah, W., & Abdullah, B. (2013). Does 3D produce more symptoms of visually induced motion sickness? Conference Proceedings IEEE Engineering in Medicine and Biology Society (pp. 6405–6408).Google Scholar
  111. Nunn, P. W. G. (1881). Seasickness, its causes and treatment. Lancet ii, 1151–1152.Google Scholar
  112. O’Hanlon, J. F., & McCauley, M. E. (1974). Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aviation, Space and Environmental Medicine, 45, 366–369.Google Scholar
  113. Oman, C. M. (1990). Motion sickness: A synthesis and evaluation of the sensory conflict theory. Comparative Biochemistry and Physiology, 68, 294–303.Google Scholar
  114. Oman, C. M. (2012). Are evolutionary hypotheses for motion sickness “just-so” stories? Journal of Vestibular Research, 22, 117–127.PubMedGoogle Scholar
  115. Oman, C. M., & Cullen, K. E. (2014). Brainstem processing of vestibular sensory exafference: Implications for motion sickness etiology. Experimental Brain Research, 232, 2483–2492.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Paillard, A. C., Quarck, G., Paolino, F., et al. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. Journal of Vestibular Research, 23, 203–210.PubMedGoogle Scholar
  117. Paillard, A. C., Lamôré, M., Etard, O., et al. (2014). Is there a relationship between odours and motion sickness? Neuroscience Letters, 566, 326–30.PubMedCrossRefGoogle Scholar
  118. Palatty, P. L., Haniadka, R., Valder, B., et al. (2013). Ginger in the prevention of nausea and vomiting: A review. Critical Reviews in Food Science and Nutrition, 53, 659–669.PubMedCrossRefGoogle Scholar
  119. Perrin, P., Lion, A., Bosser, G., et al. (2013). Motion sickness in rally car co-drivers. Aviation, Space and Environmental Medicine, 84, 473–477.CrossRefGoogle Scholar
  120. Pethybridge, R. J. (1982). Sea sickness incidence in Royal Navy ships. (Report No. INM 37/82). Gosport, England: Institute of Naval Medicine.Google Scholar
  121. Pompeiano, O., d’Ascanio, P., Balaban, E., et al. (2004). Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience, 124, 153–69.CrossRefGoogle Scholar
  122. Radtke, A., Popov, K., Bronstein, A. M., et al. (2003). Vestibular-autonomic control in man: short- and long-latency effects on cardiovascular function. Journal of Vestibular Research, 13, 25–37.PubMedGoogle Scholar
  123. Reason, J. T., & Brand, J. J. (1975). Motion sickness. London: Academic Press.Google Scholar
  124. Reavley, C. M., Golding, J. F., Cherkas, L. F., et al. (2006). Genetic influences on motion sickness susceptibility in adult females: A classical twin study. Aviation, Space and Environmental Medicine, 77, 1148–1152.Google Scholar
  125. Ressiot, E., Dolz, M., Bonne, L., & Marianowski, R. (2013). Prospective study on the efficacy of optokinetic training in the treatment of sea sickness. European Annals of Otorhinolaryngology, Head and Neck Diseases, 130, 263–268.PubMedCrossRefGoogle Scholar
  126. Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology Journal, 3, 195–240.CrossRefGoogle Scholar
  127. Rolnick, A., & Lubow, R. E. (1991). Why is the driver rarely sick? The role of controllability in motion sickness. Ergonomics, 34, 867–879.PubMedCrossRefGoogle Scholar
  128. Schaub, N., Ng, K., Kuo, P., et al. (2014). Gastric and lower esophageal sphincter pressures during nausea: A study using visual motion-induced nausea and high-resolution manometry. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G741–G747.PubMedCrossRefGoogle Scholar
  129. Schelgel, T. T., Brown, T. E., Wood, S. J., et al. (2001). Orthostatic intolerance and motion sickness after parabolic flight. Journal of Applied Physiology, 90, 67–82.Google Scholar
  130. Schutz, L., Zak, D., & Holmes, J. F. (2014). Pattern of passenger injury and illness on expedition cruise ships to Antarctica. Journal of Travel Medicine, 21, 228–234.PubMedCrossRefGoogle Scholar
  131. Seibel, K., Schaffler, K., & Reitmeir, P. (2002). A randomised, placebo-controlled study comparing two formulations of dimenhydrinate with respect to efficacy in motion sickness and sedation. Arzneimittel-Forschung, 52, 529–536.PubMedGoogle Scholar
  132. Serrador, J. M., Schlegel, T. T., Black, F. O., et al. (2005). Cerebral hypoperfusion precedes nausea during centrifugation. Aviation, Space and Environmental Medicine, 76, 91–96.Google Scholar
  133. Sharma, K., Sharma, P., Sharma, A., et al. (2008). Phenylthiocarbamide taste perception and susceptibility to motion sickness: Linking higher susceptibility with higher phenylthiocarbamide taste acuity. Journal of Laryngology and Otology, 122, 1064–1073.PubMedGoogle Scholar
  134. Sharon, J. D., & Hullar, T. E. (2014). Motion sensitivity and caloric responsiveness in vestibular migraine and Meniere’s disease. Laryngoscope, 124, 969–973.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Simmons, R. G., Phillips, J. B., Lojewski, R. A., et al. (2010). The efficacy of low-dose intranasal scopolamine for motion sickness. Aviation, Space and Environmental Medicine, 81, 405–412.CrossRefGoogle Scholar
  136. Solimini, A. G. (2013). Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS One. 8(2), e56160. doi:  10.1371/journal.pone.0056160. [Epub 2013 Feb 13]
  137. Stern, R. M., Koch, K. L., Leibowitz, H. W., et al. (1985). Tachygastria and motion sickness. Aviation, Space and Environmental Medicine, 56, 1074–1077.Google Scholar
  138. Stern, R. M., Hu, S., LeBlanc, R., et al. (1993). Chinese hyper-susceptibility to vection-induced motion sickness. Aviation, Space and Environmental Medicine, 64, 827–830.Google Scholar
  139. Stewart, J. J., Wood, M. J., Parish, R. C., et al. (2000). Prokinetic effects of erythromycin after antimotion sickness drugs. Journal of Clinical Pharmacology, 40, 347–353.PubMedCrossRefGoogle Scholar
  140. Stoffregen, T. A., Chen, Y. C., & Koslucher, F. C. (2014). Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research, 232, 1389–1397.PubMedCrossRefGoogle Scholar
  141. Stoffregen, T. A., Chen, F. C., Varlet, M., et al. (2013). 2013. Getting Your Sea Legs. PLoS One., 8(6), e66949.PubMedCrossRefGoogle Scholar
  142. Stott, J. R. R. (1986). Mechanisms and treatment of motion illness. In C. J. Davis, G. V. Lake-Bakaar, & D. G. Grahame-Smith (Eds.), Nausea and vomiting: mechanisms and treatment (pp. 110–129). Berlin: Springer.CrossRefGoogle Scholar
  143. Stromberg, S. E., Russell, M. E., & Carlson, C. R. (2015). Diaphragmatic breathing and its effectiveness for the management of motion sickness. Aerospace Medicine and Human Performance, 86, 452–457.PubMedCrossRefGoogle Scholar
  144. Stroud, K. J., Harm, D. L., & Klaus, D. M. (2005). Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviation, Space and Environmental Medicine, 76, 352–356.Google Scholar
  145. Tal, D., Hershkovitz, D., Kaminski-Graif, G., et al. (2013). Vestibular evoked myogenic potentials and habituation to seasickness. Clinical Neurophysiology, 124, 2445–2449.PubMedCrossRefGoogle Scholar
  146. Tal, D., Wiener, G., & Shupak, A. (2014). Mal de debarquement, motion sickness and the effect of an artificial horizon. Journal of Vestibular Research, 24, 17–23.PubMedGoogle Scholar
  147. Thornton, W. E., & Bonato, F. (2013). Space motion sickness and motion sickness: Symptoms and etiology. Aviation, Space and Environmental Medicine, 84, 716–721.CrossRefGoogle Scholar
  148. Treisman, M. (1977). Motion sickness: An evolutionary hypothesis. Science, 197, 493–495.PubMedCrossRefGoogle Scholar
  149. Turner, M., & Griffin, M. J. (1999a). Motion sickness in public road transport: Passenger behaviour and susceptibility. Ergonomics, 42, 444–461.PubMedCrossRefGoogle Scholar
  150. Turner, M., & Griffin, M. J. (1999b). Motion sickness in public road transport: the relative importance of motion, vision and individual differences. British Journal of Psychology, 90, 519–530.PubMedCrossRefGoogle Scholar
  151. van Marion, W. F., Bongaerts, M. C., Christiaanse, J. C., et al. (1985). Influence of transdermal scopolamine on motion sickness during 7 days’ exposure to heavy seas. Clinical Pharmacology and Therapeutics, 38, 301–305.PubMedCrossRefGoogle Scholar
  152. Von Gierke, H. E., & Parker, D. E. (1994). Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviation, Space and Environmental Medicine, 65, 747–751.Google Scholar
  153. Wada, T., Konno, H., Fujisawa, S., et al. (2012). Can passengers’ active head tilt decrease the severity of carsickness? Effect of head tilt on severity of motion sickness in a lateral acceleration environment. Human Factors, 54, 226–234.PubMedCrossRefGoogle Scholar
  154. Webb, C. M., Estrada, A., & Athy, J. R. (2013). Motion sickness prevention by an 8-Hz stroboscopic environment during air transport. Aviation, Space and Environmental Medicine, 84, 177–183.CrossRefGoogle Scholar
  155. Whittle, J. (1689) An exact diary of the late expedition of His Illustrious Highness the Prince of Orange, 1689. In: J. Pike (Ed.) (1986). Tall Ships in Torbay a Brief Maritime History (p. 35). Bradford on Avon, UK: Ex Libris Press.Google Scholar
  156. Wood, C. D., & Graybiel, A. (1969). Evaluation of 16 antimotion sickness drugs under controlled laboratory conditions. Aerospace Medicine, 39, 1341–1344.Google Scholar
  157. Wood, C. D., Manno, J. E., Manno, B. R., et al. (1986). The effect of anti-motion sickness drugs on habituation to motion. Aviation, Space and Environmental Medicine, 57, 539–542.Google Scholar
  158. Yates, B. J., Miller, A. D., & Lucot, J. B. (1998). Physiological basis and pharmacology of motion sickness: an update. Brain Research Bulletin, 47, 395–406.PubMedCrossRefGoogle Scholar
  159. Yates, B. J., Catanzaro, M. F., Miller, D. J., et al. (2014). Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: Potential contributions to motion sickness. Experimental Brain Research, 232, 2455–2469.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yen-Pik-Sang, F., Billar, J. P., Golding, J. F., et al. (2003a). Behavioral methods of alleviating motion sickness: Effectiveness of controlled breathing and music audiotape. Journal of Travel Medicine, 10, 108–112.PubMedCrossRefGoogle Scholar
  161. Yen-Pik-Sang, F., Golding, J. F., & Gresty, M. A. (2003b). Suppression of sickness by controlled breathing during mild nauseogenic motion. Aviation, Space and Environmental Medicine, 74, 998–1002.Google Scholar
  162. Yen-Pik-Sang, F., Billar, J., Gresty, M. A., et al. (2005). Effect of a novel motion desensitization training regime and controlled breathing on habituation to motion sickness. Perceptual and Motor Skills, 101, 244–256.PubMedCrossRefGoogle Scholar
  163. Young, L. R., Sienko, K. H., Lyne, L. E., et al. (2003). Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation. Journal of Vestibular Research, 13, 65–77.PubMedGoogle Scholar
  164. Ziavra, N. V., Yen-Pik-Sang, F. D., Golding, J. F., et al. (2003). Effect of breathing supplemental oxygen on motion sickness in healthy adults. Mayo Clinic Proceedings, 78, 574–578.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Psychology, Faculty of Science and TechnologyUniversity of WestminsterLondonUK

Personalised recommendations