Using Geostatistics, DEM and Remote Sensing to Clarify Soil Cover Maps of Ukraine

Conference paper

Abstract

The basic soil maps of Ukraine were created during broadscale surveys between 1956 and 1961. There has been further examination of several areas but, even now, there are places without soil information. Comparison of the soil maps with remotely sensed data and digital elevation models shows some significant differences, especially in the definition of contours, and the extent of eroded soils is much increased—so there is a need for new research on spatial and chronological soil changes. For this task, we constructed a 1m-resolution digital elevation model for accurate delineation of all landform elements. Using geostatistics, we can associate soil mapping units with their landform elements and create contoured soil maps for areas where these are lacking. In the same way, it is possible to refine soil mapping units for the rest of the country.

Keywords

DEM Geostatistics Multinomial logistic regression Predictive soil mapping 

References

  1. Brenning A (2008) Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models. SAGA Seconds Out Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie 19:23–32Google Scholar
  2. Debian GNU (2015) Linux, the universal operating system. http://www.debian.org
  3. Easy Trace Group (2015) Easy Trace Pro 7.99 software package. http://www.easytrace.com
  4. Evenden G (1990) Proj. 4—Cartographic Projections Library. Source code and documentation available from https://trac.osgeo.org/proj
  5. Florinsky IV (2012) Digital terrain analysis in soil science and geology. Academic Press, CambridgeGoogle Scholar
  6. GRASS Development Team (2015) Geographic Resources Analysis Support System (GRASS) software. Open Source Geospatial Foundation Project. http://grass.osgeo.org
  7. Grinand C, Arrouays D, Laroche B, Martin MP (2008) Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma 143(1):180–190CrossRefGoogle Scholar
  8. Hengl T (2009) A practical guide to geostatistical mapping. University of AmsterdamGoogle Scholar
  9. Hutchinson MF (1996) A locally adaptive approach to the interpolation of digital elevation models. In: Third international conference/workshop on integrating GIS and environmental modeling, Santa Fe, NM, 21–26 Jan 1996. National Center for Geographic Information and Analysis, University of California, Santa Barbara http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/hutchinson_michael_dem/local.html
  10. Kempen B, Brus DJ, Heuvelink GB, Stoorvogel JJ (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151(3):311–326CrossRefGoogle Scholar
  11. Leenhardt D, Voltz M, Bornand M, Webster R (1994) Evaluating soil maps for prediction of soil water properties. Eur J Soil Sci 45(3):293–301CrossRefGoogle Scholar
  12. Li W, Zhang C (2007) A random-path Markov chain algorithm for simulating categorical soil variables from random point samples. Soil Sci Soc Am J 71(3):656–668CrossRefGoogle Scholar
  13. Meyer D, Zeileis A, Hornik K (2015) vcd: Visualizing Categorical Data. R package version 1.4–1. https://cran.r-project.org/web/packages/vcd/
  14. Mitášová H, Mitáš I (1993) Interpolation by regularized spline with tension: I. Theory and implementation. Math Geol 25(6):641–655CrossRefGoogle Scholar
  15. Neteler M, Mitasova H (2008) Open source GIS: a grass GIS approach-third edition. Springer, New YorkCrossRefGoogle Scholar
  16. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691CrossRefGoogle Scholar
  17. QGIS Development Team (2015) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  18. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org
  19. Ribeiro PJ, Diggle PJ (2001) geoR: a package for geostatistical analysis. R News 1(2):14–18Google Scholar
  20. SAGA Development Team (2015) System for automated geoscientific analyses (SAGA GIS). http://www.saga-gis.org
  21. Seijmonsbergen AC, Hengl T, Anders NS (2011) Semi-automated identification and extraction of geomorphological features using digital elevation data. Geomorphol Mapp: Methods Appl 15:297–335CrossRefGoogle Scholar
  22. Shary PA, Sharaya LS, Mitusov AV (2002) Fundamental quantitative methods of land surface analysis. Geoderma 107(1):1–32CrossRefGoogle Scholar
  23. Shuttle Radar Topography Mission (SRTM) (2015) http://www2.jpl.nasa.gov/srtm/
  24. Smith MJ, Paron P, Griffiths JS (2011) Geomorphological mapping: methods and applications, vol 15. Elsevier, AmsterdamGoogle Scholar
  25. The EPSG Geodetic Parameter Dataset (2016). http://www.epsg-registry.org/Venables WN & BD Ripley 2002 Modern applied statistics with S. Springer, New York
  26. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, ChichesterCrossRefGoogle Scholar
  27. Wood J (1996) The geomorphological characterisation of digital elevation models. Doctoral dissertation, University of LeicesterGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Soil Science, Institute of Biology Chemistry and Bio-ResourcesYuriy Fedkovych Chernivtsi National UniversityChernivtsyUkraine

Personalised recommendations