A Confidence Indicator Model for Virtual Organization Creation in Cloud Computing Environment

  • Luís Felipe BileckiEmail author
  • Adriano Fiorese
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 480)


A Virtual Organization (VO) is a form of organization where a set of independent entities share resources, skills and risks in order to attend a collaboration opportunity. The integration between VO’s concept and cloud computing seems promising since VO participants use or provide their services in a cloud computing environment. Nevertheless, in this context of integration, the problem of trust between VO partners and cloud providers is highlighted. This is noteworthy since it’s necessary to select a reliable cloud provider for a VO business partner launch its service. Therefore, this work presents a confidence indicator model for cloud computing providers using the Data Envelopment Analysis (DEA) method. For the evaluation of this work, we used Quality of Service indicators of public cloud service providers. Results presented and discussed show the generated confidence indicator can be a good criterion to help the VO’s manager to select reliable Cloud Computing providers to host VO partners during the VO creation process.


Virtual organization Confidence Cloud computing 


  1. 1.
    Esposito, E., Evangelista, P.: Investigating virtual enterprise models: literature review and empirical findings. Int. J. Prod. Econ. 148, 145–157 (2014)CrossRefGoogle Scholar
  2. 2.
    Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations – concepts and practice in manufacturing enterprises. Comput. Ind. Eng. 57, 46–60 (2009)CrossRefGoogle Scholar
  3. 3.
    de Lemos, F.S.B., Fiorese, A., Alves, O.C., Vieira Jr., R.G.: Using data envelopment analysis and fuzzy logic as intelligent risk-based decision making support for virtual organizations. Intell. Syst. Ref. Libr. 87, 203–218 (2015)CrossRefGoogle Scholar
  4. 4.
    Camarinha-Matos, L.M., Afsarmanesh, H.: The virtual enterprise concept. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) Infrastructures Virtual Enterprise, vol. 27, pp. 3–14. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Winkler, T.J., Haller, J., Gimpel, H., Weinhardt, C.: Trust indicator modeling for a reputation service in virtual organizations. In: Proceedings of the ECIS 2007, pp. 1584–1595 (2007)Google Scholar
  6. 6.
    Squicciarini, A.C., Paci, F., Bertino, E.: Trust establishment in the formation of virtual organizations. Comput. Stand. Interfaces 33, 13–23 (2011)CrossRefGoogle Scholar
  7. 7.
    Vieira, R.G., Alves-Junior, O.C., Rabelo, R.J., Fiorese, A.: A risk analysis method to support virtual organization partners’ selection. Presented at the (2014)Google Scholar
  8. 8.
    Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Futur. Gener. Comput. Syst. 29, 1012–1023 (2013)CrossRefGoogle Scholar
  9. 9.
    Sun, M., Zang, T., Xu, X., Wang, R.: Consumer-centered cloud services selection using AHP. In: 2013 International Conference on Service Sciences (ICSS), pp. 1–6 (2013)Google Scholar
  10. 10.
    Junior, O.C.A., Rabelo, R.J.: A KPI model for logistics partners’ search and suggestion to create virtual organisations. Int. J. Netw. Virtual Organ. 12, 149–177 (2013)CrossRefGoogle Scholar
  11. 11.
    Sadigh, B.L., Arikan, F., Ozbayoglu, M., Unver, H.O., Kilic, S.E.: A multi-agent system model for partner selection process in virtual enterprise. Procedia Comput. Sci. 36, 367–372 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhao, Q., Zhang, X., Xiao, R.: Particle swarm optimization algorithm for partner selection in virtual enterprise. Prog. Nat. Sci. 18, 1445–1452 (2008)CrossRefGoogle Scholar
  13. 13.
    Tang, M., Dai, X., Liu, J., Chen, J.: Towards a trust evaluation middleware for cloud service selection. Futur. Gener. Comput., Syst (2016)Google Scholar
  14. 14.
    Noor, T.H., Sheng, Q.Z., Ngu, A.H.H., Alfazi, A., Law, J.: Cloud armor: a platform for credibility-based trust management of cloud services. In: Proceedings of the 22nd ACM International Conference Information and Knowledge Management, pp. 2509–2512 (2013)Google Scholar
  15. 15.
    Yau, S.S., Yin, Y.: QoS-based service ranking and selection for service-based systems. In: Proceedings of the 2011 IEEE International Conference on Services Computing, SCC 2011, pp. 56–63 (2011)Google Scholar
  16. 16.
    Liu, X., Fletcher, K.K., Tang, M.: Service selection based on personalized preference and trade-offs among QoS factors and price. In: Proceedings of the 2012 IEEE First International Conference on Services Economics, SE 2012, pp. 32–39 (2012)Google Scholar
  17. 17.
    Mell, P.M., Grance, T.: SP 800-145. The NIST Definition of Cloud Computing. National Institute of Standards & Technology, Gaithersburg, MD, United States (2011)Google Scholar
  18. 18.
    Hwang, K., Li, D.: Trusted cloud computing with secure resources and data coloring. IEEE Internet Comput. 14, 14–22 (2010)CrossRefGoogle Scholar
  19. 19.
    Mashayekhy, L., Grosu, D.: A reputation-based mechanism for dynamic virtual organization formation in grids. In: Proceedings of the International Conference Parallel Process, pp. 108–117 (2012)Google Scholar
  20. 20.
    Cho, J.-H., Swami, A., Chen, I.-R.: A survey on trust management for mobile ad hoc networks. IEEE Commun. Surv. Tutor. 13, 562–583 (2011)CrossRefGoogle Scholar
  21. 21.
    Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: 1996 IEEE Symposium on Security and Privacy, pp. 164–173 (1996)Google Scholar
  22. 22.
    Kerschbaum, F., Haller, J., Karabulut, Y., Robinson, P.: PathTrust: a trust-based reputation service for virtual organization formation. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 193–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empirical analysis of eBay’s reputation system. In: Baye, M.R. (ed.) The Economics of the Internet and E-Commerce. Advances in Applied Microeconomics, vol. 11, pp. 127–157. Elsevier Science, Amsterdam (2002)CrossRefGoogle Scholar
  24. 24.
    Ko, R.K.L., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q., Lee, B.S.: TrustCloud: a framework for accountability and trust in cloud computing. In: Proceedings of the 2011 IEEE World Congress on Services, pp. 584–588 (2011)Google Scholar
  25. 25.
    Pearson, S., Benameur, A.: Privacy, Security and Trust Issues Arising from Cloud Computing. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 693–702 (2010)Google Scholar
  26. 26.
    Comput, J.P.D., Hendrikx, F., Bubendorfer, K., Chard, R.: Reputation systems: a survey and taxonomy. J. Parallel Distrib. Comput. 75, 184–197 (2015)CrossRefGoogle Scholar
  27. 27.
    Rehman, Z.U., Hussain, O.K., Hussain, F.K.: Iaas cloud selection using MCDM methods. In: Proceedings of the 2012 IEEE Ninth International Conference on e-Business Engineering, ICEBE 2012, pp. 246–251 (2012)Google Scholar
  28. 28.
    Whaiduzzaman, M., Gani, A., Anuar, N.B., Shiraz, M., Haque, M.N., Haque, I.T.: Cloud service selection using multicriteria decision analysis. Sci. World J. 2014, 10 (2014)Google Scholar
  29. 29.
    Velasquez, M., Hester, P.: An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10, 56–66 (2013)MathSciNetGoogle Scholar
  30. 30.
    Chen, W.C., Johnson, A.L.: A unified model for detecting efficient and inefficient outliers in data envelopment analysis. Comput. Oper. Res. 37, 417–425 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30, 1078–1092 (1984)CrossRefzbMATHGoogle Scholar
  32. 32.
    de Souza, L.M., Fernandez, M.P.: Performance evaluation methodology for cloud computing using data envelopment analysis. In: Proceedings of the Fourteenth International Conference on Networks, ICN 2015, pp. 58–64 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceSanta Catarina State UniversityJoinvilleBrazil

Personalised recommendations