Advertisement

Towards a Hyperconnected Transportation Management System: Application to Blood Logistics

  • Quentin Schoen
  • Matthieu LaurasEmail author
  • Sébastien Truptil
  • Franck Fontanili
  • Anne-Ghislaine Anquetil
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 480)

Abstract

Internet of Things, connected devices, and other wireless sensors networks offer a number of new opportunities to manage transportation flows. This is particularly interesting for critical Supply Chains like Blood Supply Chains. In this research work, we investigate how such new technologies can enhance transportation system by better managing hazards and changes. By developing an event-driven decision support system, we demonstrate how a hyperconnected solution could change the way to design and control transportation routes. This decision support system will both inform users in real-time with relevant information and propose appropriate behaviors. This system will also allow improving the whole collaboration that exists between the shippers, the carriers and the customers. A dawning application to the Blood Logistics in France is developed to highlight potential benefits of such an approach.

Keywords

Hyperconnected Transportation Event-driven system Decision support system Blood logistics 

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Avoine, G., Oechslin, P.: RFID traceability: a multilayer problem. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 125–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barthe-Delanoë, A.-M., Lauras, M., Truptil, S., Bénaben, F., Pingaud, H.: A platform for event-driven agility of processes: a delivery context use-case. In: Camarinha-Matos, L.M., Scherer, R.J. (eds.) PRO-VE 2013. IFIP AICT, vol. 408, pp. 681–690. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bénaben, F., Mu, W., Boissel-Dallier, N., Barthe, A.-M., Zribi, S., Pingaud, H.: Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0). Enterp. Inf. Syst. (EIS) 9(5–6), 556–582 (2015). Taylor & FrancisGoogle Scholar
  5. 5.
    Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.): The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications. Springer Science & Business Media, New York (2010)Google Scholar
  6. 6.
    Helo, P., Xiao, Y., Roger Jiao, J.: A web-based logistics management system for agile supply demand network design. J. Manuf. Technol. Manag. 17(8), 1058–1077 (2006)CrossRefGoogle Scholar
  7. 7.
    Kelepouris, T., Pramatari, K., Doukidis, G.: RFID-enabled traceability in the food supply chain. Ind. Manag. Data Syst. 107(2), 183–200 (2007)CrossRefGoogle Scholar
  8. 8.
    Kim, S.G., Byun, H.G., Yoo, W.S., Choi, J.S.: The real time vehicles tracking and intelligent transportation management system using smart phone application. IE Interfaces 24(4), 428–434 (2011)CrossRefGoogle Scholar
  9. 9.
    Mehar, S., Zeadally, S., Remy, G., Senouci, S.M.: Sustainable transportation management system for a fleet of electric vehicles. IEEE Trans. Intell. Transp. Syst. 16(3), 1401–1414 (2015)CrossRefGoogle Scholar
  10. 10.
    Naim, M.M., Potter, A.T., Mason, R.J., Bateman, N.: The role of transport flexibility in logistics provision. Int. J. Log. Manag. 17(3), 297–311 (2006)CrossRefGoogle Scholar
  11. 11.
    Pérez, J., Seco, F., Milanés, V., Jiménez, A., Díaz, J.C., De Pedro, T.: An RFID-based intelligent vehicle speed controller using active traffic signals. Sensors 10(6), 5872–5887 (2010)CrossRefGoogle Scholar
  12. 12.
    Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sallez, Y., Pan, S., Montreuil, B., Berger, T., Ballot, E.: On the activeness of intelligent Physical Internet containers. Comput. Ind. 81, 96–104 (2016)CrossRefGoogle Scholar
  14. 14.
    Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp. Res. Part D: Transp. Environ. 16(1), 73–77 (2011)CrossRefGoogle Scholar
  15. 15.
    Taniguchi, E., Shimamoto, H.: Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times. Transp. Res. Part C: Emerg. Technol. 12, 235–250 (2004)CrossRefGoogle Scholar
  16. 16.
    Tarapiah, S., Atalla, S., AbuHania, R.: Smart on-board transportation management system using GPS/GSM/GPRS technologies to reduce traffic violation in developing countries. Int. J. Digit. Inf. Wirel. Commun. (IJDIWC) 3(4), 430–439 (2013)Google Scholar
  17. 17.
    Yu-fang, D.A.N., Qing-lu, M.A.: Logistic transportation system based on integration of RFID, GPS and GIS technology. Appl. Res. Comput. 12, 062 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Quentin Schoen
    • 1
  • Matthieu Lauras
    • 1
    Email author
  • Sébastien Truptil
    • 1
  • Franck Fontanili
    • 1
  • Anne-Ghislaine Anquetil
    • 2
  1. 1.Industrial Engineering DepartmentUniversity of Toulouse – Mines AlbiAlbiFrance
  2. 2.Service LogistiqueEFS Pyrénées-MéditerranéeToulouseFrance

Personalised recommendations