Skip to main content

Locomotion Principles for Microrobots Based on Vibrations

  • Conference paper
  • First Online:
Microactuators and Micromechanisms

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 45))

Abstract

Microrobotics is a growing field with great advances in recent years. New applications in the fields of medicine, biology, manufacturing and maintenance technologies are developed. They require mobile systems with enhanced motion abilities. The present paper concerns principles of terrestrial locomotion for vibration-driven microrobots. Such systems are characterized by an internal periodic excitation, which is transformed to a directed motion due to asymmetric system properties. An extensive overview on the state of the art shows the great potential of the vibration-driven locomotion for miniaturized applications in technics. To perform a controllable two-dimensional locomotion with only one actuator, it is needed to overcome limits of rigid body systems. The proposed approach uses the frequency-dependent vibration behavior of elastic systems, like beams and plates. Experimental investigations are supported by finite element method. It is shown that the two-dimensional locomotion on a flat and solid ground can be controlled by only one actuator using the resonance characteristics of elastic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaza K (2007) Ein Beitrag zur Anwendung der Theorie undulatorischer Lokomotion auf mobile Roboter. Dissertation, TU Ilmenau

    Google Scholar 

  • Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007) Robotics in the small: P. 1. microbotics. IEEE Robot Autom Mag 14(2):92–103

    Google Scholar 

  • Asano M, Matsuoka T, Okamoto H et al (1995) Study for micro mobile machine with piezoelectric driving force actuator. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), vol 3, pp 2955–2960

    Google Scholar 

  • Avirovik D, Butenhoff B, Priya S (2014) Millipede-inspired locomotion through novel U-shaped piezoelectric motors. IOP Smart Mater Struct 23:1–5

    Google Scholar 

  • Baisch AT, Heimlich Ch, Karpelson M, Wood RJ (2011) HAMR3: an autonomous 1.7 g ambulatory robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5073–5076

    Google Scholar 

  • Becker F (2015) Zur Mechanik vibrationsgetriebener Roboter für terrestrische und aquatische Lokomotion. Dissertation, TU Ilmenau

    Google Scholar 

  • Becker F, Minchenya V, Zimmermann K et al (2012) Single piezo actuator driven micro robot for 2-dimensional locomotion. In: Micromechanics and microactuators, vol 2. Springer, Berlin, pp 1–10

    Google Scholar 

  • Besocke K (1987) An easily operable scanning tunneling microscope. Surf Sci 181:145–153

    Article  Google Scholar 

  • Blekham II (2000) Vibrational mechanics: nonlinear dynamic effects, general approach, application. World Scientific, Singapore

    Book  Google Scholar 

  • Bogue R (2015) Miniature and microrobots: a review of recent developments. Ind Robot 42(2):98–102

    Article  Google Scholar 

  • Bolotnik N, Figurina T (2008). Vibration-driven systems with movable internal masses: control and optimization. Proceedings of the 53nd international scientific colloquium, Ilmenau, 8–12 Sept 2008, pp 31–32

    Google Scholar 

  • Bolotnik N, Pivovarov M, Zeidis I et al (2016) The motion of a two-body limbless locomotor along a straight line in a resistive medium. Z Angew Math Mech 4:429–452

    Article  MathSciNet  Google Scholar 

  • Caprari G (2003) Autonomous micro-robots: applications and limitations. Dissertation, École polytechnique fédérale de Lausanne

    Google Scholar 

  • Daugela A, Fujii H, Jeronymo CE et al (1995) Piezo ceramic based locomotive drive. In: Proceedings of the 6th IEEE international symposium of micro machine and human science, pp 187–192

    Google Scholar 

  • DeAmbroggi F, Fortuna L, Muscato G (1997) PLIF: piezo light intelligent flea-new micro-robots controlled by self-learning techniques. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), vol 2, pp 1767–1772

    Google Scholar 

  • Diller E, Sitti M (2013) Micro-scale mobile robotics. Found Trends Robot 2(3):143–259

    Article  Google Scholar 

  • Driesen W (2008) Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: application to mobile microrobots. Dissertation, École polytechnique fédérale de Lausanne

    Google Scholar 

  • Edqvist E, Snis N, Mohr R et al (2009) Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards. J Micromech Microeng 19(7)

    Google Scholar 

  • Eigoli AK, Vossoughi GR (2010) Dynamic modeling of stick-slip motion in a legged piezoelectric driven microrobot. Int J Adv Robotic Syst 7(3):201–208

    Google Scholar 

  • Estaña R, Woern H (2007) The MiCRoN robot project. Informatik akutell, Autonome mobile systeme. Springer, Berlin, pp 334–340

    Google Scholar 

  • Farahani AA, Suratgar AA, Talebi HA (2012) Optimal controller design of legless piezo capsubot movement. Int J Adv Robot Syst 10(126):1–7

    Google Scholar 

  • Ferreira A, Fontaine J (2003) Dynamic modeling and control of a conveyance microrobotic system using active friction drive. IEEE-ASME T Mech 8(2):188–202

    Article  Google Scholar 

  • Ferreira A, Minotti P (1997) Control of a multidegree of freedom standing wave ultrasonic motor driven precise positioning system. Rev Sci Instrum 68(4):1779–1786

    Article  Google Scholar 

  • Gidoni P, Noselli G, DeSimone A (2014) Crawling on directional surfaces. Int J Non-Linear Mech 61:65–73

    Article  Google Scholar 

  • Hariri HH, Soh GS, Foong SH et al (2015) Miniature piezoelectric mobile robot driven by standing wave. Proceedings of the 14th world congress in mechanism and machine science, pp 1–6

    Google Scholar 

  • Hoffman KL, Wood RJ (2011) Passive undulatory gaits enhance walking in a myriapod millirobot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1479–1486

    Google Scholar 

  • Janocha H (2013) Unkonventionelle Aktoren: Eine Einführung. Oldenbourg Verlag, München

    Book  Google Scholar 

  • Kim B, Park S, Jee CY et al (2005) An earthworm-like locomotive mechanism for capsule endoscopes. In: Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems, 2–6 Aug 2005, pp 2997–3002

    Google Scholar 

  • Lee K, Kim Y, Park JK et al (2015) Clawed miniature inchworm robot driven by electromagnetic oscillatory actuator. J Bionic Eng 12(4):519–526

    Article  Google Scholar 

  • Lepora NF, Verschure P, Prescott TJ (2013) The state of the art in biomimetics. Bioinspir Biomm 8(1):013001

    Article  Google Scholar 

  • Li W, Li J, Hu, H et al (2011) Analysis and experiment of stick-slip motion principle in a legged microrobot. In: Proceeding of the 6th forum on strategic technology, vol 1, pp 328–332

    Google Scholar 

  • Lobontiu N, Goldfarb M, Garcia EA (2001) A piezoelectric-driven inchworm locomotion device. Mech Mach Theory 36(4):425–443

    Article  MATH  Google Scholar 

  • Lysenko V, Minchenya W, Zimmermann K (2007) Minimization of the number of actuators in legged robots using biological objects. In: Proceedings of the 52nd international scientific colloquium, Ilmenau, 10–13 Sept 2007, pp 483–488

    Google Scholar 

  • Naguyen AT, Martel S (2007) Locomotion of a miniature robot based on synchronized vibrating actuation mechanisms. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 1–6

    Google Scholar 

  • Ostrowski J, Burdick J, Lewis AD et al (1995) The mechanics of undulatory locomotion: the mixed kinematic and dynamic case. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), vol 2, pp 1945–1951

    Google Scholar 

  • Rembold U, Fatikow S (1997) Autonomous microrobots. J Intell Robot Syst 19(4):375–391

    Article  Google Scholar 

  • Rios SA, Fleming AJ, Yong YK (2015) Design of a two degree of freedom resonant miniature robotic leg. In: Proceedings of the IEEE international conference on advanced intelligent mechatronics (AIM), pp 318–323

    Google Scholar 

  • Sahu B, Taylor CR, Leang KK (2010) Emerging challenges of microactuators for nanoscale positioning, assembly, and manipulation. J Manuf Sci Eng 132(3):030917-1–16

    Google Scholar 

  • Sitti M, Ceylan H, Hu W et al (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224

    Article  Google Scholar 

  • Snis N (2008) Actuators for autonomous microrobots. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 431, Uppsala University

    Google Scholar 

  • Son KJ, Kartik V, Wickert JA et al (2006) An ultrasonic standing-wave-actuated nano-positioning walking robot: piezoelectric-metal composite beam modeling. J Vib Control 12(12):1293–1309

    Article  MATH  Google Scholar 

  • Steigenberger J (2011) Some theory towards a stringent definition of ‘locomotion’. Multibody Syst Dyn 26(1):81–90

    Article  MathSciNet  MATH  Google Scholar 

  • Steigenberger J, Behn C (2012) Worm-like locomotion systems: an intermediate theoretical approach. Oldenbourg Verlag, München

    Book  MATH  Google Scholar 

  • Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7:273–285

    Article  Google Scholar 

  • Woern H, Szymanski M, Seyfried J (2006) The I-SWARM project. In: Proceedings of the 15th IEEE international symposium on robot and human interactive communication, pp 492–496

    Google Scholar 

  • Yan G, Lu, Q, Ding G et al (2002) The prototype of a piezoelectric medical microrobot. In: 13th IEEE international symposium of micromechtronics and human science, pp 73–77

    Google Scholar 

  • Yuxin P, Yulong P, Gu X et al (2015) A review of long range piezoelectric motors using frequency leveraged method. Sensor Actuat A-Phys 235:240–255

    Article  Google Scholar 

  • Zhan X, Xu J, Fang H (2015) Planar locomotion of a vibration-driven system with two internal masses. Appl Math Model. http://dx.doi.org/10.1016/j.apm.2015.06.016

  • Zimmermann K, Zeidis I, Behn C (2009) Mechanics of terrestrial locomotion. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

The research work reported here was partly supported by Deutsche Forschungsgemeinschaft Grant ZI 540/19-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Becker, F., Lysenko, V., Minchenya, V.T., Kunze, O., Zimmermann, K. (2017). Locomotion Principles for Microrobots Based on Vibrations. In: Zentner, L., Corves, B., Jensen, B., Lovasz, EC. (eds) Microactuators and Micromechanisms. Mechanisms and Machine Science, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-45387-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45387-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45386-6

  • Online ISBN: 978-3-319-45387-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics