Skip to main content

A Biologically Inspired Sensor Mechanism for Amplification of Tactile Signals Based on Parametric Resonance

  • Conference paper
  • First Online:
Microactuators and Micromechanisms

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 45))

  • 1030 Accesses

Abstract

In this paper, the vibrational motion of an elastic beam under the parametric excitation is investigated theoretically and numerically. The problem is motivated by biological tactile sensors, called vibrissae or whiskers. Mammals use these thin long hairs for exploration of the surrounding area, object localization and texture discrimination. We propose a mechanical model of the vibrissa sweeping across a rough surface as a straight truncated beam stimulated by a periodic following force. The equation of transverse motion of the beam is studied using the Euler–Bernoulli beam theory and asymptotic methods of mechanics. The numerical analysis is performed by means of the finite element method. It is shown that the parametric resonance of the beam occurs at the specific ranges of the excitation frequency, which depend on the parameters of the beam and the amplitude of the applied force. For these frequency values, the vibrations of the beam are unstable with exponentially increasing amplitude. The comparison of the resonance ranges obtained theoretically and numerically is made. Thus, together with the realisation of the viscoelastic support of an artificial tactile sensor, the parametric resonance may be a potentially useful method for amplifying small signals arising from the contact with an object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andermann M, Moore C (2008) Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli. Brain Res 1235:74–81

    Article  Google Scholar 

  • Behn C (2013) Mathematical modeling and control of biologically inspired uncertain motion systems with adaptive features. Habilitation thesis, TU Ilmenau

    Google Scholar 

  • Berg R, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    Article  Google Scholar 

  • Bogolyubov N, Mitropoliskii Y (1961) Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    Google Scholar 

  • Dörfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135:147–154

    Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T et al (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119

    Article  Google Scholar 

  • Fend M, Bovet S, Hafner VV (2004) The artificial mouse—a robot with whiskers and vision. In: Proceedings of the 35th international symposium on robotics, Paris, 23–26 Mar 2004

    Google Scholar 

  • Jadhav SP, Feldman DE (2010) Texture coding in the whisker system. Curr Opin Neurobiol 20(3):313–318

    Article  Google Scholar 

  • Kantorovich L, Krylov V (1958) Approximate methods of higher analysis. P. Noordhoff, Groningen

    MATH  Google Scholar 

  • Landau L, Lifshitz E (1969) Mechanics. Course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  • McLachlan NW (1947) Theory and application of Mathieu functions. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Mitchinson B, Grant RA, Arkley K et al (2011) Active vibrissal sensing in rodents and marsupials. Phil Trans R Soc B 366:3037–3048

    Article  Google Scholar 

  • Neimark M, Andermann M, Hopfeld J et al (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23:6499–6509

    Google Scholar 

  • Niederschuh S, Witte H, Schmidt M (2014) The role of vibrissal sensing in forelimb position control during travelling locomotion in the rat (Rattus norvegicus, Rodentia). J Zool 118(1):51–62

    Article  Google Scholar 

  • Pearson MJ, Mitchinson B, Sullivan JC et al (2011) Biomimetic vibrissal sensing for robots. Phil Trans R Soc B 366:3085–3096

    Article  Google Scholar 

  • Scholz G, Rahn C (2008) Profile sensing with an actuated whisker. IEEE T Robot Autom 20:124–127

    Article  Google Scholar 

  • Solomon JH, Hartmann MJ (2006) Biomechanics: robotic whiskers used to sense features. Nature 443(7111):525

    Google Scholar 

  • Svetlitsky V (2005) Dynamics of rods. Springer, Berlin

    MATH  Google Scholar 

  • Valdivia y Alvarado P, Subramaniam V, Triantafyllou M (2012) Design of a bio-inspired whisker sensor for underwater applications. In: IEEE sensors 2012, Taipei, 28–31 Oct 2012, pp 92

    Google Scholar 

  • Vincent S (1912) The function of vibrissae in the behavior of the white rat. Behav Monogr 1:1–81

    Google Scholar 

  • Voges D, Carl K, Klauer G et al (2012) Structural characterization of the whisker system of the rat. IEEE Sens 12(2):332–339

    Article  Google Scholar 

  • Volkova T, Zeidis I, Naletova VA et al (2016a) The dynamical behavior of a spherical pendulum in a ferrofluid volume influenced by a magnetic force. Arch Appl Mech (First online)

    Google Scholar 

  • Volkova T, Zeidis I, Witte H et al (2016b) Analysis of the vibrissa parametric resonance causing a signal amplification during whisking behaviour. J Bionic Eng 13:312–323

    Article  Google Scholar 

  • Will C, Steigenberger J, Behn C (2016) Bio-inspired technical vibrissae for quasi-static profile scanning. Lect Notes Electr Eng (LNEE) 370:277–295

    Article  Google Scholar 

  • Wolfe J, Hill DN, Pahlavan S et al (2008) Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol 6:e215

    Article  Google Scholar 

  • Yan W, Kan Q, Kergrene K et al (2013) A truncated conical beam model for analysis of the vibration of rat whiskers. J Biomech 46:1987–1995

    Article  Google Scholar 

  • Zentner L (2014) Nachgiebige Mechanismen. De Gruyter Oldenbourg, München

    Book  Google Scholar 

  • Zimmer U (1995) Self-localization in dynamic environments. In: IEEE/SOFT international workshop BIES’95, Tokio, 30–31 May 1995, p 8

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Grant ZI 540-16/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zeidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Volkova, T., Zeidis, I., Zimmermann, K. (2017). A Biologically Inspired Sensor Mechanism for Amplification of Tactile Signals Based on Parametric Resonance. In: Zentner, L., Corves, B., Jensen, B., Lovasz, EC. (eds) Microactuators and Micromechanisms. Mechanisms and Machine Science, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-45387-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45387-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45386-6

  • Online ISBN: 978-3-319-45387-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics