Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 480 Accesses

Abstract

Quartz resonators have become a promising tool in bioanalytical sensing during the past decades. They allow for detecting oscillation changes (motional impedance and resonance frequency) arising from changes of the mechanical properties at the sensor interface, or more precisely within the decay length of the acoustic wave (∼250 nm in water).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johannsmann D (2008) Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys Chem Chem Phys 10:4516–4534

    Article  CAS  Google Scholar 

  2. Vaughan RD, Guilbault GG (2007) Piezoelectric immunosensors. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 237–280

    Google Scholar 

  3. Ebersole RC, Foss RP, Ward MD (1991) Piezoelectric cell growth sensor. Nat Biotechnol 9:450–454

    Article  CAS  Google Scholar 

  4. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  Google Scholar 

  5. Wegener J, Janshoff A, Galla H-J (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    Google Scholar 

  6. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34:121–151

    Article  CAS  Google Scholar 

  7. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromol 4:1099–1120

    Article  CAS  Google Scholar 

  8. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric Sensors. Springer, Berlin, pp 303–338

    Google Scholar 

  9. Zampetti E, Pantalei S, Macagnano A, Proietti E, Di Natale C et al (2008) Use of a multiplexed oscillator in a miniaturized electronic nose based on a multichannel quartz crystal microbalance. Sensors Actuators B: Chem 131:159–166

    Article  CAS  Google Scholar 

  10. Abe T, Esashi M (2000) One-chip multichannel quartz crystal microbalance (QCM) fabricated by deep RIE. Sens Actuators, A 82:139–143

    Article  CAS  Google Scholar 

  11. Tatsuma T, Watanabe Y, Oyama N, Kitakizaki K, Haba M (1999) Multichannel quartz crystal microbalance. Anal Chem 71:3632–3636

    Article  CAS  Google Scholar 

  12. Jin X, Huang Y, Mason A, Zeng X (2009) Multichannel monolithic quartz crystal microbalance gas sensor array. Anal Chem 81:595–603

    Article  CAS  Google Scholar 

  13. Rabe J, Büttgenbach S, Schröder J, Hauptmann P (2003) Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens J 3:361–368

    Article  CAS  Google Scholar 

  14. Ogi H, Nagai H, Fukunishi Y, Yanagida T, Hirao M et al (2010) Multichannel wireless-electrodeless quartz-crystal microbalance immunosensor. Anal Chem 82:3957–3962

    Article  CAS  Google Scholar 

  15. Jaruwongrungsee K, Maturos T (2009) Analysis of quartz crystal microbalance sensor array with circular flow chamber. Int J Appl Biomed Eng 2:50–54

    Google Scholar 

  16. Huang GS, Wang M-T, Hong M-Y (2006) A versatile QCM matrix system for online and high-throughput bio-sensing. Analyst 131:382–387

    Article  CAS  Google Scholar 

  17. Seidler K, Polreichová M, Lieberzeit PA, Dickert FL (2009) Biomimetic yeast cell typing-application of QCMs. Sensors 9:8146–8157

    Google Scholar 

  18. Tuantranont A, Wisitsora-at A, Sritongkham P, Jaruwongrungsee K (2011) A review of monolithic multichannel quartz crystal microbalance: a review. Anal Chim Acta 687:114–128

    Article  CAS  Google Scholar 

  19. AZ Electronic Materials GmbH (Germany) AZ® ECI 3000 photoresist—Universal i-Line/crossover photoresist series. http://www.microchemicals.com/micro/az_eci_3027_photoresist.pdf

  20. Berg S, Johannsmann D (2001) Laterally coupled quartz resonators. Anal Chem 73:1140–1145

    Article  CAS  Google Scholar 

  21. Shen F, Lee KH, Shea SJO, Lu P, Ng TY (2003) Frequency interference between two quartz crystal microbalances. IEEE Sens J 3:274–281

    Article  Google Scholar 

  22. Lu F, Lee HP, Lu P, Lim SP (2005) Finite element analysis of interference for the laterally coupled quartz crystal microbalances. Sens Actuators, A 119:90–99

    Article  CAS  Google Scholar 

  23. Martin BA, Hager HE (1989) Velocity profile on quartz crystals oscillating in liquids. J Appl Phys 65:2630–2635

    Article  Google Scholar 

  24. Borovsky B, Mason B, Krim J (2000) Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J Appl Phys 88:4017–4021

    Article  CAS  Google Scholar 

  25. Johannsmann D, Heim L-O (2006) A simple equation predicting the amplitude of motion of quartz crystal resonators. J Appl Phys 100:094505

    Article  Google Scholar 

  26. Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79:3392–3400

    Article  CAS  Google Scholar 

  27. Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP et al (2007) The cell as a material. Curr Opin Cell Biol 19:101–107

    Article  CAS  Google Scholar 

  28. Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A et al (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  29. Lucklum R, Eichelbaum F (2007) Interface circuits for QCM sensors. In: Steinem C, Janshoff A (eds) Piezoelectric Sensors. Springer, Berlin, pp 3–47

    Google Scholar 

  30. Yang M, Thompson M (1993) Multiple chemical information from the thickness shear mode acoustic wave sensor in the liquid phase. Anal Chem 65:1158–1168

    Article  CAS  Google Scholar 

  31. Cumpson PJ (1997) Quartz crystal microbalance: a new design eliminates sensitivity outside the electrodes, often wrongly attributed to the electric fringing field. J Vacuum Sci Technol A: Vacuum, Surf, Films 15:2407–2412

    Article  CAS  Google Scholar 

  32. Ghafouri S, Thompson M (2001) Electrode modification and the response of the acoustic shear wave device operating in liquids. Analyst 126:2159–2167

    Article  CAS  Google Scholar 

  33. Rodahl M, Höök F, Kasemo B (1996) QCM operation in liquids: an explanation of measured variations in frequency and q factor with liquid conductivity. Anal Chem 68:2219–2227

    Article  CAS  Google Scholar 

  34. Janshoff A, Galla H-J, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed Engl 39:4004–4032

    Article  CAS  Google Scholar 

  35. Stich MIJ, Wolfbeis OS (2008) Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I. Springer, Berlin, pp 429–461

    Google Scholar 

  36. Borisov SM, Seifner R, Klimant I (2011) A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, ph and temperature. Anal Bioanal Chem 400:2463–2474

    Article  CAS  Google Scholar 

  37. Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67:3746–3752

    Article  CAS  Google Scholar 

  38. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Oberleitner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberleitner, M. (2018). MQCM: Multiple Cytomechanic Sensing. In: Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45384-2_4

Download citation

Publish with us

Policies and ethics