Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 478 Accesses

Abstract

The biological recognition unit in biosensors can be represented by enzymes, antibodies/ antigens, nucleic acids, DNA strands, cell organelles or particles, micro-organisms, whole eukaryotic cells, or tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  Google Scholar 

  2. Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4:583–595

    Article  CAS  Google Scholar 

  3. Xi B, Yu N, Wang X, Xu X, Abassi YA (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3:484–495

    Article  CAS  Google Scholar 

  4. Hug TS (2003) Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev Technol 1:479–488

    Article  CAS  Google Scholar 

  5. Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188

    Article  CAS  Google Scholar 

  6. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27:697–711

    Article  CAS  Google Scholar 

  7. Stolwijk JA (2011) Electric manipulation and impedance analysis of adherent cells on gold-film electrodes. University of Regensburg, Thesis

    Google Scholar 

  8. Banica F-G (2012) Chemical sensors and biosensors: fundamentals and applications (Google eBook). Wiley, Lomdon

    Book  Google Scholar 

  9. Fan X, White IM, Shopova SI, Zhu H, Suter JD et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  10. Liu Q, Wu C, Cai H, Hu N, Zhou J et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461

    Article  CAS  Google Scholar 

  11. Michaelis S, Robelek R, Wegener J (2012) Studying cell–surface interactions in vitro: a survey of experimental approaches and techniques. In: Kasper C, Witte F, Pörtner R (eds) Tissue engineering III: cell—surface interactions for tissue culture. Springer, Berlin, pp 33–66

    Google Scholar 

  12. Fang Y (2011) Label-free biosensors for cell biology. Int J Electrochem 2011:1–16

    Article  CAS  Google Scholar 

  13. Chan JW, Lieu DK (2009) Label-Free biochemical characterization of stem cells using vibrational spectroscopy. J Biophotonics 2:656–668

    Article  CAS  Google Scholar 

  14. Notingher I (2007) Raman Spectroscopy cell-based biosensors. Sensors 7:1343–1358

    Article  CAS  Google Scholar 

  15. Shamah SM, Cunningham BT (1090) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 2011:136

    Google Scholar 

  16. Fang Y (2010) Label-free and non-invasive biosensor cellular assays for cell adhesion. J Adhes Sci Technol 24:1011–1021

    Article  CAS  Google Scholar 

  17. Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398:2505–2533

    Article  CAS  Google Scholar 

  18. Halai R, Cooper MA (2012) Using label-free screening technology to improve efficiency in drug discovery. Expert Opin Drug Discov 7:123–131

    Article  CAS  Google Scholar 

  19. Cooper MA (2006) Current biosensor technologies in drug discovery. Drug Discov

    Google Scholar 

  20. Bizet K, Gabrielli C, Perrot H (1999) Biosensors based on piezoelectric transducers. Analusis 7:609–616

    Article  Google Scholar 

  21. Saitakis M, Gizeli E (2012) Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 69:357–371

    Article  CAS  Google Scholar 

  22. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 303–338

    Chapter  Google Scholar 

  23. Errachid A, Zine N, Samitier J, Bausells J (2004) FET-based chemical sensor systems fabricated with standard technologies. Electroanalysis 16:1843–1851

    Article  CAS  Google Scholar 

  24. Brittinger M, Fromherz P (2005) Field-effect transistor with recombinant potassium channels: fast and slow response by electrical and chemical interactions. Appl Phys A Mater Sci Process 81:439–447

    Article  CAS  Google Scholar 

  25. Pabst M, Wrobel G, Ingebrandt S, Sommerhage F, Offenhäusser A (2007) Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface. Eur Phys J E 24:1–8

    Article  CAS  Google Scholar 

  26. Schmidtner M, Fromherz P (2006) Functional Na+ channels in cell adhesion probed by transistor recording. Biophys J 90:183–189

    Article  CAS  Google Scholar 

  27. Wang P, Xu G, Qin L, Xu Y, Li Y et al (2005) Cell-based biosensors and its application in biomedicine. Sens Actuators B Chem 108:576–584

    Article  CAS  Google Scholar 

  28. Mourzina Y, Mai T, Poghossian A, Ermolenko Y, Yoshinobu T et al (2003) K+-selective field-effect sensors as transducers for bioelectronic applications. Electrochim Acta 48:3333–3339

    Article  CAS  Google Scholar 

  29. May KML, Wang Y, Bachas LG, Anderson KW (2004) Development of a whole-cell-based biosensor for detecting histamine as a model toxin. Anal Chem 76:4156–4161

    Article  CAS  Google Scholar 

  30. Braeken D, Rand DR, Andrei R, Huys ME Spira et al (2009) Glutamate sensing with enzyme-modified floating-gate field effect transistors. Biosens Bioelectron 24:2384–2389

    Article  CAS  Google Scholar 

  31. Yin L, Chou J, Chung W, Sun T (2001) Glucose ENFET doped with MnO2 powder. Sens Actuators B Chem 76:187–192

    Article  CAS  Google Scholar 

  32. Park KY, Choi SB, Lee M, Sohn BK, Choi SY (2002) ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens Actuators B Chem 83:90–97

    Article  CAS  Google Scholar 

  33. Luo XL, Xu JJ, Zhao W, Chen HY (2004) A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens Bioelectron 19:1295–1300

    Article  CAS  Google Scholar 

  34. Luo XL, Xu JJ, Zhao W, Chen HY (2004) Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens Actuators B Chem 97:249–255

    Article  CAS  Google Scholar 

  35. Chen JC, Chou JC, Sun TP, Hsiung SK (2003) Portable urea biosensor based on the extended-gate field effect transistor. Sens Actuators B Chem 91:180–186

    Article  CAS  Google Scholar 

  36. Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N (2003) A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs. Biosens Bioelectron 19:131–135

    Article  CAS  Google Scholar 

  37. Sant W, Pourciel ML, Launay J, Do Conto T, Martinez A et al (2003) Development of chemical field effect transistors for the detection of urea. Sens Actuators B Chem 95:309–314

    Article  CAS  Google Scholar 

  38. Aouni F, Mlika R, Martelet C, Ben Ouada H, Jaffrezic-Renault N et al (2004) Modelling of the potentiometric response of ENFETs based on enzymatic multilayer membranes. Electroanalysis 16:1907–1911

    Article  CAS  Google Scholar 

  39. Rebriiev AV, Starodub NF (2004) Enzymatic biosensor based on the ISFET and photopolymeric membrane for the determination of urea. Electroanalysis 16:1891–1895

    Article  CAS  Google Scholar 

  40. Niwa D, Omichi K, Motohashi N, Homma T, Osaka T (2005) Organosilane self-assembled monolayer-modified field effect transistors for on-chip ion and biomolecule sensing. Sens Actuators B Chem 108:721–726

    Article  CAS  Google Scholar 

  41. Xu J-J, Zhao W, Luo X-L, Chen H-Y (2005) A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun 792–794

    Google Scholar 

  42. Poghossian A, Schöning MJ, Schroth P, Simonis A, Lüth H (2001) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens Actuators B Chem 76:519–526

    Article  CAS  Google Scholar 

  43. Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H et al (2001) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens Actuators B Chem 78:237–242

    Article  CAS  Google Scholar 

  44. Soldatkin AP, Arkhypova VN, Dzyadevych SV, El’skaya AV, Gravoueille JM et al (2005) Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta 66:28–33

    Article  CAS  Google Scholar 

  45. Lehmann M, Baumann W, Brischwein M, Gahle HJ, Freund I et al (2001) Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosens Bioelectron 16:195–203

    Article  CAS  Google Scholar 

  46. Wolf B, Brischwein M, Lob V, Ressler J, Wiest J (2007) Cellular signaling: aspects for tumor diagnosis and therapy. Biomedizinische Technik (Biomed Eng) 52:164–168

    Article  Google Scholar 

  47. Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J et al (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39:1759–1771

    Article  CAS  Google Scholar 

  48. Wiest J, Brischwein M (2005) Cellular assays with multiparametric bioelectronic sensor chips. Chimia 59:243–246

    Article  CAS  Google Scholar 

  49. Thedinga E, Kob A, Holst H, Keuer A, Drechsler S et al (2007) Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicol Appl Pharmacol 220:33–44

    Article  CAS  Google Scholar 

  50. Seeland S, Török M, Kettiger H, Treiber A, Hafner M et al (2013) A cell-based, multiparametric sensor approach characterises drug-induced cytotoxicity in human liver HepG2 cells. Toxicol In Vitro 27:1109–1120

    Article  CAS  Google Scholar 

  51. Schwarzenberger T, Wolf P, Brischwein M, Kleinhans R, Demmel F et al (2011) Impedance sensor technology for cell-based assays in the framework of a high-content screening system. Physiol Meas 32:977–993

    Article  CAS  Google Scholar 

  52. Ressler J, Grothe H, Motrescu E, Wolf B (2004) New concepts for chip-supported multi-well-plates: realization of a 24-well-plate with integrated impedance-sensors for functional cellular screening applications and automated microscope aided cell-based assays. In: Conference proceedings of the 26th annual international conference of the IEEE Engineering in Medicine and Biology Society, pp. 2074–2077

    Google Scholar 

  53. Otto AM, Brischwein M, Niendorf A, Henning T, Motrescu E et al (2003) Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect Prev 27:291–296

    Article  CAS  Google Scholar 

  54. Otto AM, Brischwein M, Motrescu E, Cabala W, Grothe H et al (2004) Chips instead of mice: cells on bioelectronic sensor-chips as an alternative to animal experiments. ALTEX Alternat Animal Exp 70–76

    Google Scholar 

  55. Lob V, Geisler T, Brischwein M, Uhl R, Wolf B (2007) Automated live cell screening system based on a 24-well-microplate with integrated micro fluidics. Med Biol Eng Comput 45:1023–1028

    Article  CAS  Google Scholar 

  56. Kustermann S, Boess F, Buness A, Schmitz M, Watzele M et al (2013) A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol In Vitro 27:1589–1595

    Article  CAS  Google Scholar 

  57. Kubisch R, Bohrn U, Fleischer M, Stütz E (2012) Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments. Sensors 12:3370–3393

    Article  CAS  Google Scholar 

  58. Kocincová AS, Nagl S, Arain S, Krause C, Borisov SM et al (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100:430–438

    Article  CAS  Google Scholar 

  59. Kleinhans R, Brischwein M, Wang P, Becker B, Demmel F et al (2012) Sensor-based cell and tissue screening for personalized cancer chemotherapy. Med Biol Eng Comput 50:117–126

    Article  Google Scholar 

  60. Ehret R, Baumann W, Brischwein M, Lehmann M, Henning T et al (2001) Multiparametric microsensor chips for screening applications. Fresenius’ J Anal Chem 369:30–35

    Article  CAS  Google Scholar 

  61. Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E et al (2007) Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal Biochem 371:92–104

    Article  CAS  Google Scholar 

  62. Brischwein M, Motrescu ER, Cabala E, Otto M, Grothe H et al (2003) Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3:234–240

    Article  CAS  Google Scholar 

  63. Baumann W, Schreiber E, Krause G, Stüwe S, Podssun A et al (2002) Multiparametric neurosensor microchip. In: Proceedings of eurosensors XVI, pp 1169–1172

    Google Scholar 

  64. Baumann WH, Lehmann M, Schwinde A, Ehret R, Brischwein M et al (1999) Microelectronic sensor system for microphysiological application on living cells. Sens Actuators, B 55:77–89

    Article  CAS  Google Scholar 

  65. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 01862:C125–C136

    Google Scholar 

  66. Schöning MJ, Poghossian A (2006) Bio FEDs (field-effect devices): state-of-the-art and new directions. Electroanalysis 18:1893–1900

    Article  CAS  Google Scholar 

  67. Hafner F (2000) Cytosensor microphysiometer: technology and recent applications. Biosens Bioelectron 15:149–158

    Article  CAS  Google Scholar 

  68. Poghossian A, Ingebrandt S, Offenhäusser A, Schöning MJ (2009) Field-effect devices for detecting cellular signals. Semin Cell Dev Biol 20:41–48

    Article  CAS  Google Scholar 

  69. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT et al (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    Article  CAS  Google Scholar 

  70. Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD et al (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–113

    Article  CAS  Google Scholar 

  71. Schöning MJ, Wagner T, Wang C, Otto R, Yoshinobu T (2005) Development of a handheld 16 channel pen-type LAPS for electrochemical sensing. Sens Actuators B Chem 108:808–814

    Article  CAS  Google Scholar 

  72. Yicong W, Ping W, Xuesong Y, Gaoyan Z, Huiqi H et al (2001) Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sens Actuators B Chem 80:215–221

    Article  Google Scholar 

  73. Yicong W, Ping W, Xuesong Y, Qingtao Z, Rong L et al (2001) A novel microphysiometer based on MLAPS for drugs screening. Biosens Bioelectron 16:277–286

    Article  CAS  Google Scholar 

  74. Qintao Z, Ping W, Parak WJ, George M, Zhang G (2001) Novel design of multi-light LAPS based on digital compensation of frequency domain. Sens Actuators B Chem 73:152–156

    Article  CAS  Google Scholar 

  75. Wagner T, Yoshinobu T, Rao C, Otto R, Schöning MJ (2006) “All-in-one” solid-state device based on a light-addressable potentiometric sensor platform. Sens Actuators B Chem 117:472–479

    Article  CAS  Google Scholar 

  76. Wagner T, Rao C, Kloock JP, Yoshinobu T, Otto R et al (2006) “LAPS Card”—a novel chip card-based light-addressable potentiometric sensor (LAPS). Sens Actuators B Chem 118:33–40

    Article  CAS  Google Scholar 

  77. Yoshinobu T, Schöning MJ, Otto R, Furuichi K, Mourzine Y et al (2003) Portable light-addressable potentiometric sensor (LAPS) for multisensor applications. Sens Actuators B Chem 95:352–356

    Article  CAS  Google Scholar 

  78. Eklund SE, Thompson RG, Snider RM, Carney CK, Wright DW et al (2009) Metabolic discrimination of select list agents by monitoring cellular responses in a multianalyte microphysiometer. Sensors 9:2117–2133

    Article  CAS  Google Scholar 

  79. Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A et al (2006) Multianalyte microphysiometry as a tool in metabolomics and systems biology. J Electroanal Chem 587:333–339

    Article  CAS  Google Scholar 

  80. Das A, Lin Y-H, Lai C-S (2014) Miniaturized amorphous-silicon based chemical imaging sensor system using a mini-projector as a simplified light-addressable scanning source. Sens Actuators B Chem 190:664–672

    Article  CAS  Google Scholar 

  81. Lin Y-H, Das A, Lai C-S (2013) A simple and convenient set-up of light addressable potentiometric sensors (LAPS) for chemical imaging using a commercially available projector as a light source. Int J Electrochem Sci 8:7062–7074

    CAS  Google Scholar 

  82. Werner CF, Wagner T, Miyamoto K, Yoshinobu T, Schöning MJ (2012) High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up. Sens Actuators B Chem 175:118–122

    Article  CAS  Google Scholar 

  83. Yoshinobu T, Ecken H, Ismail ABMd, Iwasaki H, Lüth H et al (2001) Chemical imaging sensor and its application to biological systems. Electrochim Acta 47:259–263

    Article  CAS  Google Scholar 

  84. Clark LC Jr (1956) Monitor and control of blood and tissue oxygen tensions. ASAIO J 2:41–48

    Google Scholar 

  85. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  86. Prodromidis MI, Karayannis MI (2002) Enzyme based amperometric biosensors for food analysis. Electroanalysis 14:241–261

    Article  CAS  Google Scholar 

  87. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA 81:3761–3764

    Article  CAS  Google Scholar 

  88. Giaever I, Keese CR (1993) A Morphological biosensor for mammalian cells. Nature 366:591–592

    Article  CAS  Google Scholar 

  89. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  CAS  Google Scholar 

  90. Janshoff A, Kunze A, Michaelis S, Heitmann V, Reiss B et al (2010) Cell adhesion monitoring using substrate-integrated sensors. J Adhes Sci Technol 24:2079–2104

    Article  CAS  Google Scholar 

  91. Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 89:7919–7923

    Article  CAS  Google Scholar 

  92. Reddy L, Wang H-S, Keese CR, Giaever I, Smith TJ (1998) Assessment of rapid morphological changes associated with elevated cAMP levels in human orbital fibroblasts. Exp Cell Res 245:360–367

    Article  CAS  Google Scholar 

  93. Martin T, Jiang W (2012) Tight junctions in cancer metastasis and their investigation using ECIS (electric cell-substrate impedance sensing). In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 119–130

    Chapter  Google Scholar 

  94. Smith TJ, Wang H-S, Hogg MG, Henrikson RC, Keese CR et al (1994) Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with graves ophthalmopathy. Proc Natl Acad Sci USA 91:5094–5098

    Article  CAS  Google Scholar 

  95. Lo C-M, Keese CR, Giaever I (1994) pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res 213:391–397

    Article  CAS  Google Scholar 

  96. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci USA 88:7896–7900

    Article  CAS  Google Scholar 

  97. Lo C-M, Keese CR, Giaever I (1993) Monitoring motion of confluent cells in tissue culture. Exp Cell Res 204:102–109

    Article  CAS  Google Scholar 

  98. Lovelady D, Richmond T, Maggi A, Lo C-M, Rabson D (2007) Distinguishing cancerous from noncancerous cells through analysis of electrical noise. Phys Rev E 76:1–10

    Article  CAS  Google Scholar 

  99. Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA 101:1554–1559

    Article  CAS  Google Scholar 

  100. Plunger B, Choi C, Sparer T (2012) Electrical cell-substrate impedance sensing for measuring cellular transformation, migration, invasion, and anticancer compound screening. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 55–69

    Chapter  Google Scholar 

  101. Szaszi K, Vandermeer M, Amoozadeh Y (2012) Epithelial wound healing and the effects of cytokines investigated by ECIS. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 131–175

    Chapter  Google Scholar 

  102. Liu C, Tam J, Sanders A, Jiang D, Ko C et al (2012) Electric cell-substrate impedance sensing as a screening tool for wound healing agents. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 203–216

    Chapter  Google Scholar 

  103. Bosanquet D, Harding K, Jiang W (2012) ECIS, cellular adhesion and migration in keratinocytes. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 217–237

    Chapter  Google Scholar 

  104. Keese CR, Bhawe K, Wegener J, Giaever I (2002) Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques 33:842–850

    CAS  Google Scholar 

  105. Sanders A, Saravolac V, Mason M, Jiang W (2012) ECIS as a tool in the study of metastasis suppressor genes: epithelial protein lost in neoplasm (EPLIN). In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 41–54

    Chapter  Google Scholar 

  106. Jiang W, Ye L, Ren H, Kift-Morgan A, Topley N et al (2012) Tumour-endothelial and tumour-mesothelial interactions investigated by impedance sensing based cell analyses. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 177–193

    Chapter  Google Scholar 

  107. Rahim S, Üren A (2011) A real-time electrical impedance based technique to measure invasion of endothelial cell monolayer by cancer cells. J Visual Exp e2792

    Google Scholar 

  108. Balda MS, Whitney JA, Flores C, González S, Cereijido M et al (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  CAS  Google Scholar 

  109. Campbell CE, Laane MM, Haugarvoll E, Giaever I (2007) Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens Bioelectron 23:536–542

    Article  CAS  Google Scholar 

  110. Stolwijk JA, Michaelis S, Wegener J (2012) Cell growth and cell death studied by electric cell-substrate impedance sensing. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer, Netherlands, pp 85–117

    Chapter  Google Scholar 

  111. Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19:1000–1005

    Article  CAS  Google Scholar 

  112. Ceriotti L, Ponti J, Broggi F, Kob A, Drechsler S et al (2007) Real-time assessment of cytotoxicity by impedance measurement on a 96-well plate. Sens Actuators B Chem 123:769–778

    Article  CAS  Google Scholar 

  113. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JHT (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493

    Article  CAS  Google Scholar 

  114. Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH et al (2009) A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9:2176–2183

    Article  CAS  Google Scholar 

  115. Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S et al (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3:213–222

    Article  CAS  Google Scholar 

  116. Opp D, Wafula B, Lim J, Huang E, Lo J-C et al (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625–2629

    Article  CAS  Google Scholar 

  117. Asphahani F, Zhang M (2007) Cellular impedance biosensors for drug screening and toxin detection. Analyst 132:835–841

    Article  CAS  Google Scholar 

  118. Ghosh PM, Keese CR, Giaever I (1993) Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells. Biophys J 64:1602–1609

    Article  CAS  Google Scholar 

  119. Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR et al (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26:4720–4727

    Article  CAS  Google Scholar 

  120. Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33:348–357

    CAS  Google Scholar 

  121. Alexander F, Price DT, Bhansali S (2010) Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells. J Phys: Conf Ser 224:012134

    Google Scholar 

  122. Mamouni J, Yang L (2011) Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Biomed Microdevice 13:1075–1088

    Article  Google Scholar 

  123. Caviglia C, Heiskanen A, Andresen TL, Emnéus J (2012) Comparison of microelectrode sensing configurations for impedimetric cell monitoring. In: Proceedings of the international workshop on impedance spectroscopy

    Google Scholar 

  124. Rappaz B, Breton B, Shaffer E, Turcatti G (2014) Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb Chem High Throughput Screening 17:80–88

    Article  CAS  Google Scholar 

  125. Kühn J, Shaffer E, Mena J, Breton B, Parent J et al (2013) Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev Technol 11:101–107

    Article  CAS  Google Scholar 

  126. Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S et al (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS ONE 9:e107317

    Article  CAS  Google Scholar 

  127. Robelek R (2009) Surface plasmon resonance sensors in cell biology: basics and application. Bioanal. Rev. 1:57–72

    Article  Google Scholar 

  128. Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10:9630–9646

    Article  CAS  Google Scholar 

  129. Proll G, Steinle L, Pröll F, Kumpf M, Moehrle B et al (2007) Potential of label-free detection in high-content-screening applications. J Chromatogr A 1161:2–8

    Article  CAS  Google Scholar 

  130. Velasco-Garcia MN (2009) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin Cell Dev Biol 20:27–33

    Article  CAS  Google Scholar 

  131. Hoa XD, Kirk G, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23:151–160

    Article  CAS  Google Scholar 

  132. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  133. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T et al (2014) Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14:4948–4959

    Article  CAS  Google Scholar 

  134. Ritchie RH (1957) Plasma losses by fast electrons in thin metal films. Phys Rev 106:874–881

    Article  CAS  Google Scholar 

  135. Kretschmann E (1971) Die Bestimmungen Optischer Konstanten von Metallen Durch Anregung van Oberflächen Plasma-Schwingungen. Zeitschrift für Physik 241:313–324

    Article  CAS  Google Scholar 

  136. Liedberg B, Lundström I, Stenberg E (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens Actuators B Chem 11:63–72

    Article  CAS  Google Scholar 

  137. Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance—how it all started. Bios Bioelectron 10:i–ix

    Google Scholar 

  138. Golosovsky M, Lirtsman V, Yashunsky V, Davidov D, Aroeti B (2009) Midinfrared surface-plasmon resonance: a novel biophysical tool for studying living cells. J Appl Phys 105. doi:10.1063/1.3116143

  139. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  CAS  Google Scholar 

  140. Yu F, Tian S, Yao D, Knoll W (2004) Surface plasmon enhanced diffraction for label-free biosensing. Anal Chem 76:3530–3535

    Article  CAS  Google Scholar 

  141. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Optical biosensors for monitoring dynamic mass redistribution in living cells mediated by epidermal growth factor receptor activation. Anal Chem 77:5720–5725

    Article  CAS  Google Scholar 

  142. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940

    Article  CAS  Google Scholar 

  143. Yanase Y, Suzuki H, Tsutsui T, Hiragun T, Kameyoshi Y et al (2007) The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens Bioelectron 22:1081–1086

    Article  CAS  Google Scholar 

  144. Hide M, Tsutsui T, Sato H, Nishimura T, Morimoto K et al (2002) Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal Biochem 302:28–37

    Article  CAS  Google Scholar 

  145. Yashunsky V, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2010) Real-Time Monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy. Biophys J 99:4028–4036

    Article  CAS  Google Scholar 

  146. Yanase Y, Araki A, Suzuki H, Tsutsui T, Kimura T et al (2010) Development of an optical fiber SPR sensor for living cell activation. Biosens Bioelectron 25:1244–1247

    Article  CAS  Google Scholar 

  147. Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M et al (2009) Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 24:1667–1673

    Article  CAS  Google Scholar 

  148. Vala M, Robelek R, Bocková M, Wegener J, Homola J (2013) Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron 40:417–421

    Article  CAS  Google Scholar 

  149. Tanaka M, Hiragun T, Tsutsui T, Yanase Y, Suzuki H et al (2008) Surface plasmon resonance biosensor detects the downstream events of active PKCβ in antigen-stimulated mast cells. Biosens Bioelectron 23:1652–1658

    Article  CAS  Google Scholar 

  150. Quinn JG, O’Neill S, Doyle A, McAtamney C, Diamond D et al (2000) Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Anal Biochem 281:135–143

    Article  CAS  Google Scholar 

  151. Giebel K, Bechinger C, Herminghaus S, Riedel M, Leiderer P et al (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76:509–516

    Article  CAS  Google Scholar 

  152. Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287

    Article  CAS  Google Scholar 

  153. Watanabe K, Matsuura K, Kawata F, Nagata K, Ning J et al (2012) Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomed. Opt. Express 3:354

    Article  Google Scholar 

  154. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2009) Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol. 10:16

    Article  CAS  Google Scholar 

  155. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2010) Using surface plasmon resonance imaging to probe dynamic interactions between cells and extracellular matrix. Cytometry Part A 77A:895–903

    Article  CAS  Google Scholar 

  156. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6:209

    Article  CAS  Google Scholar 

  157. Ramsden JJ, Li S-Y, Heinzle E, Prenosil JE (1995) Optical method for measurment of nuber and shape of attached cells in real time. Cytometry 102:97–102

    Article  Google Scholar 

  158. Nuutinen T, Karvinen P, Rahomäki J, Vahimaa P (2012) Resonant waveguide grating (RWG): overcoming the problem of angular sensitivity by conical, broad-band illumination for fluorescence measurements. Anal Methods 281–284

    Google Scholar 

  159. Zaytseva N, Miller W, Goral V, Hepburn J, Fang Y (2011) Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl Phys Lett 98. doi:10.1063/1.3582611

  160. Horváth R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2003) Optical waveguide sensor for on-line monitoring of bacteria. Opt Lett 28:1233–1235

    Article  Google Scholar 

  161. Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sens Actuators B Chem 81:316–328

    Article  CAS  Google Scholar 

  162. Li S-Y, Ramsden JJ, Prenosil JE, Heinzle E (1994) Measurement of adhesion and spreading kinetics of Baby Hamster Kidney and Hybridoma cells using an integrated optical method. Biotechnol Prog 10:520–524

    Article  CAS  Google Scholar 

  163. Fang Y (2010) Resonant waveguide grating biosensor for microarrays. In: Zourob M, Lakhtakia A (eds) Optical guided-wave chemical and biosensors II. Springer, Berlin, pp 27–42

    Chapter  Google Scholar 

  164. Ramsden JJ, Li S-Y, Prenosil JE, Heinzle E (1994) Kinetics of adhesion and spreading of animal cells. Biotechnol Bioeng 43:939–945

    Article  CAS  Google Scholar 

  165. Fang Y, Li GG, Peng J (2005) Optical biosensor provides insights for Bradykinin B(2) receptor signaling in A431 cells. FEBS Lett 579:6365–6374

    Article  CAS  Google Scholar 

  166. Fang Y (2010) Probing cancer signaling with resonant waveguide grating biosensors. Expert Opin Drug Discov 5:1237–1248

    Article  CAS  Google Scholar 

  167. Fang Y, Ferrie AM, Li G (2005) Probing cytoskeleton modulation by optical biosensors. FEBS Lett 579:4175–4180

    Article  CAS  Google Scholar 

  168. Schröder R, Schmidt J, Blättermann S, Peters L, Janssen N et al (2011) Applying label-free dynamic mass redistribution technology to frame signaling of G protein–coupled receptors noninvasively in living cells. Nat Protoc 6:1748–1760

    Article  CAS  Google Scholar 

  169. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  170. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  171. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  Google Scholar 

  172. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859–3874

    Article  CAS  Google Scholar 

  173. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114

    Article  CAS  Google Scholar 

  174. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  175. Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  176. Coyle LM, Gouterman M (1999) Correcting Lifetime measurements for temperature. Sens Actuators, B 61:92–99

    Article  CAS  Google Scholar 

  177. Hradil J, Davis C, Mongey K, Mcdonagh C, Maccraith BD (2002) Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach. Measur. Sci. Technol. 13:1552–1557

    Article  CAS  Google Scholar 

  178. Stich MIJ, Wolfbeis OS (2008) Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I. Springer, Berlin, pp 429–461

    Chapter  Google Scholar 

  179. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv Func Mater 18:1399–1406

    Article  CAS  Google Scholar 

  180. Fischer LH, Borisov SM, Schaeferling M, Klimant I, Wolfbeis OS (2010) Dual sensing of pO2 and temperature using a water-based and sprayable fluorescent paint. Analyst 135:1224–1229

    Article  CAS  Google Scholar 

  181. Borisov SM, Seifner R, Klimant I (2011) A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature. Anal Bioanal Chem 400:2463–2474

    Article  CAS  Google Scholar 

  182. Fischer L (2012) New materials for temperature and pressure sensitive fluorescent paints. University of Regensburg, Thesis

    Google Scholar 

  183. Naciri M, Kuystermans D, Al-Rubeai M (2008) Monitoring pH and dissolved oxygen in mammalian cell culture using optical sensors. Cytotechnology 57:245–250

    Article  CAS  Google Scholar 

  184. Borisov SM, Krause C, Arain S, Wolfbeis OS (2006) Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide. Adv Mater 18:1511–1516

    Article  CAS  Google Scholar 

  185. Schroeder CR, Neurauter G, Klimant I (2007) Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems. Microchim Acta 158:205–218

    Article  CAS  Google Scholar 

  186. Vasylevska GS, Borisov SM, Krause C, Wolfbeis OS (2006) Indicator-loaded permeation-selective microbeads for use in fiber optic simultaneous sensing of pH and dissolved oxygen. Chem Mater 18:4609–4616

    Article  CAS  Google Scholar 

  187. Schröder CR, Polerecky L, Klimant I (2007) Time-Resolved pH/pO2 mapping with luminescent hybrid sensors. Anal Chem 79:60–70

    Article  CAS  Google Scholar 

  188. Tian Y, Shumway BR, Cody Youngbull A, Li Y, Jen AK-Y et al (2010) Dually fluorescent sensing of pH and dissolved oxygen using a membrane made from polymerizable sensing monomers. Sens Actuators B Chem 147:714–722

    Article  CAS  Google Scholar 

  189. Meier RJ, Schreml S, Wang X, Landthaler M, Babilas P et al (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int Ed Engl 50:10893–10896

    Article  CAS  Google Scholar 

  190. Meier RJ (2011) Luminescent single and dual sensors for in vivo imaging of pH and pO2. University of Regensburg, Thesis

    Google Scholar 

  191. Lu H, Jin Y, Tian Y, Zhang W, Holl MR et al (2011) New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in cyanobacteria. J Mater Chem 21:19293

    Article  CAS  Google Scholar 

  192. Liu R, Xiao T, Cui W, Shinar J, Shinar R (2013) Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring. Anal Chim Acta 778:70–78

    Article  CAS  Google Scholar 

  193. Zhang L, Su F, Buizer S, Lu H, Gao W et al (2013) A dual sensor for real-time monitoring of glucose and oxygen. Biomaterials 34:9779–9788

    Article  CAS  Google Scholar 

  194. Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21:2216–2220

    Article  CAS  Google Scholar 

  195. Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67:3746–3752

    Article  CAS  Google Scholar 

  196. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET et al (1996) Acoustic wave sensors: theory, design, and physico-chemical applications. Academic Press, San Diego

    Google Scholar 

  197. Janshoff A, Galla H-J, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew Chem Int Ed Engl 39:4004–4032

    Article  CAS  Google Scholar 

  198. Chang S-M, Muramatsu H, Nakamura C, Miyake J (2000) The principle and applications of piezoelectric crystal sensors. Mater Sci Eng, C 12:111–123

    Article  Google Scholar 

  199. Čavić BA, Thompson M, Hayward GL (1999) Acoustic waves and the study of biochemical macromolecules and cells at the sensor–liquid interface. Analyst 124:1405–1420

    Article  Google Scholar 

  200. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors—part I. Anal Chem 65:940–948

    Article  Google Scholar 

  201. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Part II. Anal Chem 65:987–996

    Article  Google Scholar 

  202. Lec R (2001) Piezoelectric biosensors: recent advances and applications. In: IEEE international frequency control symposium and PDA exhibition, pp 419–429

    Google Scholar 

  203. Montagut Y, Narbon JG, Jiménez Y, March C, Montoya A et al (2011) QCM technology in biosensors. In: Serra PPA (ed) Biosensors—emerging materials and applications. InTech, p 630

    Google Scholar 

  204. Thompson M, Kipling A (1991) Thickness-shear-mode acoustic wave sensors in the liquid phase. A review. Analyst 116:881–890

    Article  CAS  Google Scholar 

  205. Johannsmann D (2007) Studies of viscoelasticity with the QCM. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 49–109

    Chapter  Google Scholar 

  206. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34:121–151

    Article  CAS  Google Scholar 

  207. Lucklum R (2005) Non-gravimetric contributions to QCR sensor response. The Analyst 130:1465–1473

    Article  CAS  Google Scholar 

  208. Speight RE, Cooper MA (2012) A survey of the 2010 quartz crystal microbalance literature. J Mol Recognit 25:451–473

    Article  CAS  Google Scholar 

  209. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromol 4:1099–1120

    Article  CAS  Google Scholar 

  210. Marx KA (2007) The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 371–424

    Chapter  Google Scholar 

  211. Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184

    Article  CAS  Google Scholar 

  212. Becker B, Cooper MA (2011) A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 24:754–787

    Article  CAS  Google Scholar 

  213. Cheng CI, Chang Y-P, Chu Y-H (2012) Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 41:1947–1971

    Article  CAS  Google Scholar 

  214. Xi J, Chen J, Garcia M, Penn L (2013) Quartz crystal microbalance in cell biology studies. J. Biochip Tissue Chip S5:1–9

    Article  Google Scholar 

  215. Wegener J, Janshoff A, Galla H-JH-J (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    Article  CAS  Google Scholar 

  216. Wegener J, Seebach J, Janshoff A, Galla H-J (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78:2821–2833

    Article  CAS  Google Scholar 

  217. Lord MS, Modin C, Foss M, Duch M, Simmons A et al (2006) Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27:4529–4537

    Article  CAS  Google Scholar 

  218. Modin C, Stranne A-L, Foss M, Duch M, Justesen J et al (2006) QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27:1346–1354

    Article  CAS  Google Scholar 

  219. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  Google Scholar 

  220. Zhou T, Marx KA, Warren M, Schulze H, Braunhut SJ (2000) The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol Prog 16:268–277

    Article  CAS  Google Scholar 

  221. Fohlerová Z, Skládal P, Turánek J (2007) Adhesion of Eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens Bioelectron 22:1896–1901

    Article  CAS  Google Scholar 

  222. Li F, Wang JH-C, Wang Q-M (2007) Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Biosens Bioelectron 23:42–50

    Article  CAS  Google Scholar 

  223. Li F, Wang JH-C, Wang Q-M (2008) Thickness shear mode acoustic wave sensors for characterizing the viscoelastic properties of cell monolayer. Sens Actuators B Chem 128:399–406

    Article  CAS  Google Scholar 

  224. Li J, Thielemann C, Reuning U, Johannsmann D (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340

    Article  CAS  Google Scholar 

  225. Galli Marxer C, Collaud Coen M, Greber T, Greber UF, Schlapbach L (2003) Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Anal Bioanal Chem 377:578–586

    Google Scholar 

  226. Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79:3392–3400

    Article  CAS  Google Scholar 

  227. Reiss B, Janshoff A, Steinem C, Seebach J, Wegener J (2003) Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study. Langmuir 19:1816–1823

    Article  CAS  Google Scholar 

  228. Fredriksson C, Khilman S, Kasemo B, Steel DM (1998) In vitro real-time characterization of cell attachment and spreading. J Mater Sci Mater Med 9:785–788

    Article  CAS  Google Scholar 

  229. Tan L, Xie Q, Jia X, Guo M, Zhang Y et al (2009) Dynamic measurement of the surface stress induced by the attachment and growth of cells on au electrode with a quartz crystal microbalance. Biosens Bioelectron 24:1603–1609

    Article  CAS  Google Scholar 

  230. Chou H-C, Yan T-R, Chen K-S (2009) Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization. Colloids Surf. B Biointerfaces 73:244–249

    Article  CAS  Google Scholar 

  231. Ebersole RC, Foss RP, Ward MD (1991) Piezoelectric cell growth sensor. Nat Biotechnol 9:450–454

    Article  CAS  Google Scholar 

  232. Guo M, Chen J, Zhang Y, Chen K, Pan C et al (2008) Enhanced Adhesion/spreading and proliferation of mammalian cells on electropolymerized porphyrin film for biosensing applications. Biosens Bioelectron 23:865–871

    Article  CAS  Google Scholar 

  233. Le Guillou-Buffello D, Gindre M, Johnson P, Laugier P, Migonney V (2011) An alternative quantitative acoustical and electrical method for detection of cell adhesion process in real-time. Biotechnol Bioeng 108:947–962

    Article  CAS  Google Scholar 

  234. Lord MS, Modin C, Foss M, Duch M, Simmons A et al (2008) Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance. Biomaterials 29:2581–2587

    Article  CAS  Google Scholar 

  235. Marx KA, Zhou T, Warren M, Braunhut SJ (2003) Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol Prog 19:987–999

    Article  CAS  Google Scholar 

  236. Michaelis S (2010) Non-invasive biosensors to characterize the cell-material interface. Westfälische Wilhelms-University Münster, Thesis

    Google Scholar 

  237. Molino PJ, Hodson OM, Quinn JF, Wetherbee R (2008) The quartz crystal microbalance: a new tool for the investigation of the bioadhesion of diatoms to surfaces of differing surface energies. Langmuir 24:6730–6737

    Article  CAS  Google Scholar 

  238. Molino PJ, Hodson OM, Quinn JF, Wetherbee R (2006) Utilizing QCM-D to characterize the adhesive mucilage secreted by two marine diatom species in-situ and in real-time. Biomacromol 7:3276–3282

    Article  CAS  Google Scholar 

  239. Olsson ALJ, van der Mei HC, Busscher HJ, Sharma PK (2009) Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. Langmuir 25:1627–1632

    Article  CAS  Google Scholar 

  240. Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A et al (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  241. Schofield AL, Rudd TR, Martin DS, Fernig DG, Edwards C (2007) Real-time monitoring of the development and stability of biofilms of streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens Bioelectron 23:407–413

    Article  CAS  Google Scholar 

  242. Tymchenko N, Nilebäck E, Voinova MV, Gold J, Kasemo B et al (2012) Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases 7:43

    Article  CAS  Google Scholar 

  243. Braunhut SJ, McIntosh D, Vorotnikova E, Zhou T, Marx KA (2005) Detection of apoptosis and drug resistance of human breast cancer cells to taxane treatments using quartz crystal microbalance biosensor technology. Assay Drug Dev Technol 3:77–88

    Article  CAS  Google Scholar 

  244. Elsom J, Lethem MI, Rees GD, Hunter C (2008) Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell-microparticle interaction in real-time. Biosens Bioelectron 23:1259–1265

    Article  CAS  Google Scholar 

  245. Fatisson J, Azari F, Tufenkji N (2011) Real-time QCM-D monitoring of cellular responses to different cytomorphic agents. Biosens Bioelectron 26:3207–3212

    Article  CAS  Google Scholar 

  246. Kang H-W, Muramatsu H (2009) Monitoring of cultured cell activity by the quartz crystal and the micro CCD camera under chemical stressors. Biosens Bioelectron 24:1318–1323

    Article  CAS  Google Scholar 

  247. Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ (2005) Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Anal Biochem 343:23–34

    Article  CAS  Google Scholar 

  248. Tan L, Jia X, Jiang X, Zhang Y, Tang H et al (2009) In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron 24:2268–2272

    Article  CAS  Google Scholar 

  249. Wang G, Dewilde AH, Zhang J, Pal A, Vashist M et al (2011) A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes. Particle Fibre Toxicol. 8:4

    Article  CAS  Google Scholar 

  250. Zhou Y, Jia X, Tan L, Xie Q, Lei L et al (2010) Magnetically enhanced cytotoxicity of paramagnetic selenium-ferroferric oxide nanocomposites on human osteoblast-like MG-63 Cells. Biosens Bioelectron 25:1116–1121

    Article  CAS  Google Scholar 

  251. Tarantola M, Sunnick E, Schneider D, Marel A-K, Kunze A et al (2011) Dynamic changes of acoustic load and complex impedance as reporters for the cytotoxicity of small molecule inhibitors. Chem Res Toxicol 24:1494–1506

    Article  CAS  Google Scholar 

  252. Kang H-W, Muramatsu H, Lee B-J, Kwon Y-S (2010) Monitoring of anticancer effect of cisplatin and 5-fluorouracil on HepG2 cells by quartz crystal microbalance and micro CCD camera. Biosens Bioelectron 26:1576–1581

    Article  CAS  Google Scholar 

  253. Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361:77–92

    Article  CAS  Google Scholar 

  254. Marx KA, Zhou T, Montrone A, Schulze H, Braunhut SJ (2001) A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens Bioelectron 16:773–782

    Article  CAS  Google Scholar 

  255. Pax M, Rieger J, Eibl RH, Thielemann C, Johannsmann D (2005) Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Analyst 130:1474–1477

    Article  CAS  Google Scholar 

  256. Gun’ko VM, Mikhalovska LI, Savina IN, Shevchenko RV, James SL et al (2010) Characterisation and performance of hydrogel tissue scaffolds. Soft Matter 6:5351–5358

    Google Scholar 

  257. Sandrin L, Coche-Guérente L, Bernstein A, Basit H, Labbé P et al (2010) Cell adhesion through clustered ligand on fluid supported lipid bilayers. Org Biomol Chem 8:1531–1534

    Article  CAS  Google Scholar 

  258. Knerr R, Weiser B, Drotleff S, Steinem C, Göpferich A (2006) Measuring cell adhesion on RGD-modified, self-assembled PEG monolayers using the quartz crystal microbalance technique. Macromol Biosci 6:827–838

    Article  CAS  Google Scholar 

  259. Tagaya M, Ikoma T, Takemura T, Hanagata N, Yoshioka T et al (2011) Effect of interfacial proteins on osteoblast-like cell adhesion to hydroxyapatite nanocrystals. Langmuir 27:7645–7653

    Article  CAS  Google Scholar 

  260. Chen JY, Li M, Penn LS, Xi J (2011) Real-time and label-free detection of cellular response to signaling mediated by distinct subclasses of epidermal growth factor receptors. Anal Chem 3141–3146

    Google Scholar 

  261. Ko HJ, Park TH (2005) Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron 20:1327–1332

    Article  CAS  Google Scholar 

  262. Yang R, Chen JY, Xi N, Lai KWC, Qu C et al (2012) Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation. Exp Cell Res 318:521–526

    Article  CAS  Google Scholar 

  263. Sapper A, Wegener J, Janshoff A (2006) Cell motility probed by noise analysis of thickness shear mode resonators. Anal Chem 78:5184–5191

    Article  CAS  Google Scholar 

  264. Tarantola M, Marel AA-K, Sunnick E, Adam H, Wegener J et al (2010) Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis. Integrative Biol. 2:139–150

    Article  CAS  Google Scholar 

  265. Mohri S, Shimizu J, Goda N, Miyasaka T, Fujita A et al (2006) Measurements of CO2, lactic acid and sodium bicarbonate secreted by cultured cells using a flow-through type pH/CO2 sensor system based on ISFET. Sens Actuators B Chem 115:519–525

    Article  CAS  Google Scholar 

  266. Mohri S, Yamada A, Goda N, Nakamura M, Naruse K et al (2008) Application of a flow-through type pH/CO2 sensor system based on ISFET for evaluation of the glucose dependency of the metabolic pathways in cultured cells. Sens Actuators B Chem 134:447–450

    Article  CAS  Google Scholar 

  267. Steinem C, Janshoff A, Wegener J, Ulrich W-P, Willenbrink W et al (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    Article  CAS  Google Scholar 

  268. Reiß B (2004) Mikrogravimetrische Untersuchung Des Adhäsionskontakts Tierischer Zellen: Eine Biophysikalische Studie. Westälische Wilhelms-University Münster, Thesis

    Google Scholar 

  269. IMOLA-IVD. cellasys GmbH, Munich, Germany, http://www.cellasys.com/. Accessed 26 Feb 2015

  270. Bionas Discovery 2500 system. Bionas GmbH, Rostock, Germany, http://www.bionas-discovery.com/. Accessed 26 Feb 2015

  271. Wiest J (2014) Zellbasierte Toxizitätsbestimmung Mittels Elektrochemischer Mikrosensorik. BIOspektrum 20:344–345

    Article  CAS  Google Scholar 

  272. Wiest J, Schmidhuber M, Grundl D, Brischwein M, Grothe H et al (2007) Environmental engineering using living cells as signal transducers. IEEE Africon. doi:10.1109/AFRCON.2007.4401515

    Google Scholar 

  273. Geisler T, Ressler J, Harz H, Wolf B, Uhl R (2006) Automated multiparametric platform for high-content and high-throughput analytical screening on living cells. IEEE Trans Autom Sci Eng 3:169–176

    Article  Google Scholar 

  274. Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with spr for multiparametric cell profiling. Biosens Bioelectron 49:63–70

    Article  CAS  Google Scholar 

  275. Kim J, Kim S, Ohashi T, Muramatsu H, Chang S-M et al (2010) Construction of simultaneous SPR and QCM sensing platform. Bioprocess Biosyst Eng 33:39–45

    Article  CAS  Google Scholar 

  276. Hajek K, Schmittlein C, Oberleitner M, Shin I, Wegener J (2016) Biosensors. In: eLS. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Oberleitner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberleitner, M. (2018). Introduction. In: Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45384-2_1

Download citation

Publish with us

Policies and ethics