Skip to main content

Modeling of Wheel/Rail Contact

  • Chapter
  • First Online:
Book cover Rail Vehicle Dynamics

Abstract

All forces between wheel and rail (Fig. 3.1) act on a contact patch of a size of about 1.5 \(\mathrm{cm}^2\). The weight of the vehicle is translated through normal forces; the guidance through large-radius curves is provided by tangential forces; and during acceleration and braking, additional tangential forces in the circumferential direction of the wheel arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rail profile is convex: the rails’ radius of curvature is mathematically positive, since the center of curvature is located on the inner normal. The wheel profile is concave: the radius of curvature is negative. The value \(R_\mathrm{R}\) in Fig. 3.6 is the radius of curvature of the rail profile (with accurate algebraic sign), while \(R_\mathrm{W}\) is the absolute value of the radius of curvature of the wheel.

  2. 2.

    In this case, it is the left wheel from the point of view of the observer traveling with the wheelset. The wheelset is moving out of the figure.

  3. 3.

    That is not necessarily the case for forward displacements of the contact point in tight curves.

  4. 4.

    Velocities on the rail occur, for instance, on a roller rig but also during investigation in the medium- and high-frequency ranges when the rail is no longer regarded as rigid and fixed.

References

  1. DIN. Oberbau: Schienen – Symmetrische Breitfußschienen ab 46 kg/m (Superstructure: Rails - Symmetric bottom rails from 46 kg/m.). DIN EN 13647-1, German Institute for Standardization, Standards Committee Iron and Steel, Standards Committee Railway Vehicle, Berlin (1999)

    Google Scholar 

  2. N.N. Radprofile, Breite 135 und 140 mm (Wheel profiles, width 135 and 140 mm). DIN 5573, Deutsches Institut für Normung e.V., Normenausschuss Schienenfahrzeuge, Berlin (1995)

    Google Scholar 

  3. R. Gasch, D. Moelle, K. Knothe, The effects of non-linearities on the limit-cycles of railway vehicles, in The Dynamics of Vehicles on Roads and on Tracks, Proceedings of the 8th IAVSD-Symposium held at Cambridge, Mass./USA, August 1983, ed. by J.K. Hedrick (Swets and Zeitlinger, Lisse/Amsterdam, 1984), pp. 207–224

    Google Scholar 

  4. D. Nicklisch, European Patents. EP 1 091 044 A1, European Patent office, Paris (2001)

    Google Scholar 

  5. A. Nefzger, Geometrie der Berührung zwischen Radsatz und Gleis (Geometry of contact between wheelset and track). ETR 23, 113–122 (1974)

    Google Scholar 

  6. ORE, A. Nefzger, Entwicklung des Radprofils S 1002 auf dem Streckennetz der DB (Development of the wheel profile 1002 on the network of DB). C 116/DT81, ORE, Utrecht (1979)

    Google Scholar 

  7. N.K. Cooperrider, E.H. Law, R. Hull, P.S. Kadala, J.M. Tuten, Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints. Interim Report No. FRA-OR&D, US Department of Transportation (1975)

    Google Scholar 

  8. A. Theiler, Abschlussbericht der Arbeitsgruppe am ILR der TU Berlin zum Projekt Optikon (Final report of the working group at ILR of TU Berlin in the project Optikon). Technical report, Institute for aeronautics and astronautics, TU Berlin (2002)

    Google Scholar 

  9. L. Mauer, Die modulare Beschreibung des Rad/Schiene-Kontaktes im linearen Mehrkörperformalismus (Modular description of wheel/rail contact for a linear multibody formalism). Ph.D. thesis, Technical University Berlin (1988)

    Google Scholar 

  10. S. Müller, Linearized wheel-rail dynamics – stability and corrugation, in Fortschritt-Berichte VDI (also Ph.D. thesis TU Berlin), Reihe 12, Nr. 368. (VDI–Verlag, Düsseldorf, 1998)

    Google Scholar 

  11. A.H. Wickens, The dynamic stability of simplified four-wheeled vehicles having conical wheels. Int. J. Solids Struct. 1, 319–341 (1965)

    Article  Google Scholar 

  12. A.H. Wickens, The dynamics stability of a simplified four-wheeled vehicle having profiled wheels. Int. J. Solids Struct. 1, 385–406 (1965)

    Article  Google Scholar 

  13. R. Joly, Untersuchungen der Querstabiliät eines Eisenbahnfahrzeuges bei höheren Geschwindigkeiten (Investigation of lateral stability of a railway vehicle at higher speeds). Rail International - Schienen der Welt 3, 168–204 (1972)

    Google Scholar 

  14. ORE, Equations of motion of railway vehicles. ORE-report to question C 116/RP4, UIC, ORE, Utrecht (1974)

    Google Scholar 

  15. K. Knothe, Die geometrisch nichtlinearen Beziehungen für einen starren Radsatz, der auf einer starren Schiene quer verschoben wird (The geometric nonlinear relations for a rigid wheelset that is laterally displaced on a rigid track). ILR–Mitt. 17, Institut für Luft- und Raumfahrt, TU Berlin (1975)

    Google Scholar 

  16. N. Matsui, A re-examination of the wheel/rail contact geometry and its application to the hunting analysis of railway bogie vehicles having profiled wheels, in Proceedings 7th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Cambridge, UK, September, 1981, ed. by A. Wickens (Swets and Zeitlinger, Amsterdam, 1982), pp. 468–480

    Google Scholar 

  17. ORE, Geometri of contact between wheelset and track. Part 1. Measurement methods and evaluation. ORE-report to question C 116/RP3, UIC, ORE, Utrecht (1973)

    Google Scholar 

  18. N.K. Cooperrider, J.K. Hedrick, E.H. Law, C.W. Malstrom, The application of quasilinearization techniques to the prediction of nonlinear railway vehicle response, in The Dynamics of Vehicles on Roads and on Tracks. Proceedings of the IUTAM Symposium held at Delft, The Netherlands, August 1975, ed. by H.B. Pacejka (Swets and Zeitlinger, Amsterdam, 1976), pp. 314–325

    Google Scholar 

  19. W. Hauschild, Grenzzykelberechnung am nichtlinearen Rad–Schiene–System mit Hilfe der Quasilinearisierung (Limit cycle analysis for nonlinear wheel-rail-systems based on quasilinearization.). Ph.D. thesis, Technical University Berlin (1981)

    Google Scholar 

  20. J.K. Hedrick, N.K. Cooperrider, E.H. Law, The Application of Quasi-linearization Techniques to Rail Vehicle Dynamics Analysis. Final Report No. DOT-TSC-902, US Department of Transportation (1978)

    Google Scholar 

  21. A. Renger, Laufdynamik von Schienenfahrzeugen – Beitrag zur Querdynamik von vierachsigen Schienentriebfahrzeugen (Running dynamics of railway vehicles – Contribution to the lateral dynamics of four-axled railway vehicles). Report R–Mech–02/85, Akademie der Wissenschaften der DDR, Institut für Mechanik, Berlin (1985)

    Google Scholar 

  22. J. Zhang, Dynamisches Bogenlaufverhalten mit stochastischen Gleislagefehlern - Modell- und Verfahrensentwicklung unter Verwendung der Methode der statistischen Linearisierung (Dynamic curving behavior with stochastic track irregularities – Development of models and processes based on the method of stochastic linearization). VDI Fortschritt–Berichte (also Ph.D. thesis at TU Berlin), Reihe 12, Nr. 304. VDI–Verlag, Düsseldorf (1997)

    Google Scholar 

  23. W. Kik, J. Piotrowski, A fast, approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling, in Proceedings of the 2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems held at Budapest, July 29–31, 1996, ed. by I. Zobory (Technical University of Budapest, 1996), pp. 52–61

    Google Scholar 

  24. A. Renger, Theorie der Bewegung eines Radsatzes auf geradem Gleis mit stochastischen Gleislagefehlern (Theory of motion of a wheelset on straight track with stochastic track irregularities). Z. Angew. Math. Mech. 62, 141–169 (1982)

    Article  MATH  Google Scholar 

  25. A.D. de Pater, The exact theory of the motion of a single wheelset moving on a purely straight track. Report No. 648, Delft University of Technology, Delft (1979)

    Google Scholar 

  26. J.J. Kalker, Three Dimensional Elastic Bodies in Rolling Contact (Kluwer Academic Publishers, Dordrecht, 1990)

    Book  MATH  Google Scholar 

  27. H. Hertz, Über die Berührung fester, elastischer Körper. (On the contact of solid elastic bodies). Journal für die reine und angewandte Mathematik 92, 156–171 (1882)

    Google Scholar 

  28. H. Hertz, Über die Berührung fester elastischer Körper (On the contact of solid elastic bodies), in Heinrich Hertz, Collected Works. Band 1, Leipzig (1895), pp. 155–173

    Google Scholar 

  29. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  30. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Dover, New York, 1926)

    Google Scholar 

  31. A.I. Lurje, Räumliche Probleme der Elastizitätstheorie (Three-Dimensional Problems of Elasticity) (Akademie-Verlag, Berlin, 1963)

    Google Scholar 

  32. J.J. Kalker, User’s Manual of CONTACT, Version CONPS93. Technical report, TH Delft, NL (1993)

    Google Scholar 

  33. G. Wang, K. Knothe, The influence of inertia forces on steady-state rolling contact between two elastic cylinders. Acta Mech. 79, 221–232 (1989)

    Article  MATH  Google Scholar 

  34. H. Le The, Normal- und Tangentialspannungsberechnung beim rollenden Kontakt für Rotationskörper mit nichtelliptischen Kontaktflächen. (Analysis of normal and tangential stresses in rolling contact for rotational bodies with nonelliptical contact patches), in VDI Fortschritt–Berichte (also Ph.D. thesis TU Berlin), Reihe 12, Nr. 87. (VDI–Verlag, Düsseldorf, 1987)

    Google Scholar 

  35. E. Vollebregt, User Guide for CONTACT. Technical report, VORtech BV (2012)

    Google Scholar 

  36. E. Vollebregt, Numerical modelling of measured railway creep versus creep-force curves with CONTACT. Wear 314, 87–95 (2014)

    Article  Google Scholar 

  37. F.W. Carter, The electric locomotive. Proc. Inst. Civil Eng. 201, 221–252 (1916) (Discussion pp. 253–289)

    Google Scholar 

  38. O. Reynolds, On rolling friction. Philos. Trans. R. Soc. Lond. 166(I), 155–174 (1876)

    Google Scholar 

  39. A.O. Gilchrist, The long road to solution of the railway hunting and curving problem. Proc. Inst. Mech. Eng. 212, 219–226 (1998)

    Article  Google Scholar 

  40. F.W. Carter, On the action of a locomotive driving wheel. Proc. R. Soc. Lond. A 112, 151–157 (1926)

    Google Scholar 

  41. H. Fromm, Berechnung des Schlupfes beim Rollen deformierbarer Scheiben (Analysis of creepage during rolling of deformable discs). Z. Angew. Math. Mech. (also Ph.D. thesis TH Berlin, 1926) 7, 27–58 (1927)

    Google Scholar 

  42. H. Poritsky, Stresses and deflections of cylindrical bodies in contact with application to contact of gears and locomotive wheels. J. Appl. Mech. 17, 191–201 (1950) (Diskussion hierzu in [20])

    Google Scholar 

  43. H. Bufler, Zur Theorie der rollenden Reibung (On the theory of rolling friction). Ing. Arch. XXVII, 137–152 (1959)

    Google Scholar 

  44. G. Heinrich, K. Desoyer, Rollreibung mit axialem Schub (Rolling friction with axial shear force). Ing.-Arch. 36, 48–72 (1967)

    Article  Google Scholar 

  45. J.J. Kalker, On the rolling contact of two elastic bodies in the presence of dry friction. Dissertation, TH Delft, Delft (1967)

    Google Scholar 

  46. M. Fink, Physikalisch-chemische Vorgänge zwischen Rad und Schiene (Physical-chemical processes between rail and wheel). Glasers Annalen 75, 207–210 (1951)

    Google Scholar 

  47. B.N.J. Persson, Sliding Friction - Physical Principles and Applications (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  48. E. Melan, Der Spannungszustand eines “Mises–Henckyschen”  Kontinuums bei veränderlicher Belastung (Stress state of a Mises–Hencky continuum for variable load). Sitzber. Akad. Wiss. Wien, Abt. IIa 147, 73–87 (1938)

    Google Scholar 

  49. A. Groß-Thebing, Lineare Modellierung des instationären Rollkontaktes von Rad und Schiene (Linear modeling of non-steady rolling contact of rail and wheel). VDI Fortschritt–Berichte (also Ph.D. thesis TU Berlin), Reihe 12, Nr. 199. VDI–Verlag, Düsseldorf (1993)

    Google Scholar 

  50. K. Hempelmann, Short Pitch Corrugation on Railway Rails – A Linear Model for Prediction, in VDI Fortschritt–Berichte (also Ph.D. thesis TU Berlin), Reihe 12, Nr. 231. VDI–Verlag, Düsseldorf (1994)

    Google Scholar 

  51. K.L. Johnson, The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane. J. Appl. Mech. 25, 339–346 (1958)

    MathSciNet  MATH  Google Scholar 

  52. K.L. Johnson, The effect of spin upon the rolling motion of an elastic sphere on a plane. J. Appl. Mech. 25, 332–338 (1958)

    MathSciNet  MATH  Google Scholar 

  53. J. Vermeulen, K.L. Johnson, Contact of nonspherical elastic bodies transmitting tangential forces. J. Appl. Mech. 31, 338–340 (1964)

    Article  MATH  Google Scholar 

  54. A.E.W. Hobbs, A Survey on Creep. Technical Note TN DYN 52, British Rail Research, Derby (1967) (reprinted 1976)

    Google Scholar 

  55. Z.Y. Shen, J.K. Hedrick, J.A. Elkins, A comparison of alternative creep-force models for rail vehicle dynamic analysis, in The Dynamics of Vehicles on Roads and Tracks. Proceedings of the 8th IAVSD Symposium held at MIT Cambridge/MA, August 15–19, 1983, ed. by J.K. Hedrick (Swets and Zeitlinger, Lisse, 1984), pp. 591–605

    Google Scholar 

  56. J.J. Kalker, Simplified theory of rolling contact, in Delft Progress Report, Series C, Mechanical and Aeronautical Engineering and Shipbuilding (Delft University Press, Delft, 1973), pp. 1–10

    Google Scholar 

  57. A. Lünenschloß, F. Bucher, K. Knothe, Normalkontakt zweier Körper mit rauen Oberflächen (Normal contact of two bodies with rough surfaces). Fortschritt–Berichte VDI, Reihe 2, Nr. 596, Düsseldorf, 2002. VDI–Verlag (2002)

    Google Scholar 

  58. A. Lünenschloß, F. Bucher, K. Knothe, Numerische Behandlung des quaistatischen Tangentialkontaktproblems zweier Körper mit rauen Oberflächen (Investigation of the quasistatic tangential contact problems of two bodies with rough surfaces). Fortschritt–Berichte VDI, Reihe 2, Nr. 616, Düsseldorf, 2002. VDI–Verlag (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Knothe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Knothe, K., Stichel, S. (2017). Modeling of Wheel/Rail Contact. In: Rail Vehicle Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-45376-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45376-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45374-3

  • Online ISBN: 978-3-319-45376-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics