Skip to main content

ATP-Sensitive Potassium Channels (KATP) Play a Role in Hypoxic Preconditioning Against Neonatal Hypoxic-Ischemic Brain Injury

  • Chapter
  • First Online:
Book cover Neuroprotective Therapy for Stroke and Ischemic Disease

Abstract

ATP-sensitive potassium (KATP) channels are known as the potassium-conducting channels coupling cellular metabolic status to membrane electrical activity. Either an increase in ADP or decrease in ATP levels opens KATP channels and hyperpolarizes the membrane potential. Knocking out the inward rectifier K+ channel (Kir6.2) subunit of the KATP channels or pharmacologically blocking KATP channels increases brain injury. Overexpression of the Kir6.2 subunit or pharmacologically opening KATP channel reduces neuronal injury from ischemic insults. Hypoxic preconditioning (HPC) provides neuroprotection against subsequent ischemic brain injury. Similar to its effects in heart, KATP channels contribute to the hypoxic preconditioning-induced neuroprotection. KATP channels may therefore serve as therapeutic targets in ischemic or hypoxic-ischemic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette protein

ABCCx:

ATP-binding cassette Cx gene

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

HPC:

Hypoxic preconditioning

IPC:

Ischemic preconditioning

KATP :

ATP-sensitive potassium channels

KCN :

Gene name for potassium channel

KCNJ11 :

Potassium channel J11 gene

Kir:

Inward rectifier potassium channels

MCAO:

Middle cerebral artery occlusion

NBD:

Nucleotide binding domain

PIP2:

Phosphatidylinositol 4,5-biphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

RT-PCR:

Reverse transcription polymerase chain reaction

SNr:

Substantia nigra

SUR:

Sulfonylurea receptor

TM:

Transmembrane region

TMD:

Transmembrane domain

References

  1. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305(5930):147–148

    Article  CAS  PubMed  Google Scholar 

  2. Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312(5993):446–448

    Article  CAS  PubMed  Google Scholar 

  3. Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362

    Article  CAS  PubMed  Google Scholar 

  4. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81(2):133–176

    Article  CAS  PubMed  Google Scholar 

  5. Spruce AE, Standen NB, Stanfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316(6030):736–738

    Article  CAS  PubMed  Google Scholar 

  6. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245(4914):177–180

    Article  CAS  PubMed  Google Scholar 

  7. Ashford ML, Sturgess NC, Trout NJ, Gardner NJ, Hales CN (1988) Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch 412(3):297–304

    Article  CAS  PubMed  Google Scholar 

  8. Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification, and affinity labeling of the brain (3H)glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sci U S A 85(24):9816–9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M (1990) Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247(4944):852–854

    Article  CAS  PubMed  Google Scholar 

  10. Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276(36):33369–33374

    Article  CAS  PubMed  Google Scholar 

  11. Bernardi H, De W Jr, Epelbaum J, Mourre C, Amoroso S, Slama A, Fosset M, Lazdunski M (1993) ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc Natl Acad Sci U S A 90(4):1340–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, Seino Y, Mizuta M, Seino S (1995) Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 270(11):5691–5694

    Article  CAS  PubMed  Google Scholar 

  13. Hunter M, Giebisch G (1988) Calcium-activated K-channels of Amphiuma early distal tubule: inhibition by ATP. Pflugers Arch 412(3):331–333

    Article  CAS  PubMed  Google Scholar 

  14. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311(5983):271–273

    Article  CAS  PubMed  Google Scholar 

  15. Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch 405(4):305–309

    Article  CAS  PubMed  Google Scholar 

  16. Kakei M, Kelly RP, Ashcroft SJ, Ashcroft FM (1986) The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett 208(1):63–66

    Article  CAS  PubMed  Google Scholar 

  17. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366

    Article  CAS  PubMed  Google Scholar 

  18. Sun XL, Hu G (2010) ATP-sensitive potassium channels: a promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol 37(2):243–252

    Article  CAS  PubMed  Google Scholar 

  19. Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275

    Article  CAS  PubMed  Google Scholar 

  20. Tymianski M (2011) Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci 14(11):1369–1373

    Article  CAS  PubMed  Google Scholar 

  21. Lee SR, Tsuji K, Lee SR, Lo EH (2004) Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 24(3):671–678

    Article  CAS  PubMed  Google Scholar 

  22. Terzic A (1999) New frontiers of cardioprotection. Clin Pharmacol Ther 66(2):105–109

    Article  CAS  PubMed  Google Scholar 

  23. Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M (2000) K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100(3):465–474

    Article  CAS  PubMed  Google Scholar 

  24. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  25. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  26. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270(5239):1166–1170

    Article  CAS  PubMed  Google Scholar 

  27. Ammala C, Moorhouse A, Gribble F, Ashfield R, Proks P, Smith PA, Sakura H, Coles B, Ashcroft SJ, Ashcroft FM (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 379(6565):545–548

    Article  CAS  PubMed  Google Scholar 

  28. Babenko AP, Guilar-Bryan L, Bryan J (1998) A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687

    Article  CAS  PubMed  Google Scholar 

  29. Miki T, Nagashima K, Seino S (1999) The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 22(2):113–123

    Article  CAS  PubMed  Google Scholar 

  30. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352(6332):244–247

    Article  CAS  PubMed  Google Scholar 

  31. Garlid KD (2000) Opening mitochondrial K(ATP) in the heart—what happens, and what does not happen. Basic Res Cardiol 95(4):275–279

    Article  CAS  PubMed  Google Scholar 

  32. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440(7083):470–476

    Article  CAS  PubMed  Google Scholar 

  33. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  34. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE III, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268(5209):423–426

    Article  CAS  PubMed  Google Scholar 

  35. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16(5):1011–1017

    Article  CAS  PubMed  Google Scholar 

  36. Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM (2005) Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24(2):229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Babenko AP, Bryan J (2003) Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 278(43):41577–41580

    Article  CAS  PubMed  Google Scholar 

  38. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271(40):24321–24324

    Article  CAS  PubMed  Google Scholar 

  39. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282(5391):1141–1144

    Article  CAS  PubMed  Google Scholar 

  40. Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272(5269):1785–1787

    Article  CAS  PubMed  Google Scholar 

  41. Proks P, Capener CE, Jones P, Ashcroft FM (2001) Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J Gen Physiol 118(4):341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417(6888):523–526

    Article  CAS  PubMed  Google Scholar 

  43. Enkvetchakul D, Nichols CG (2003) Gating mechanism of KATP channels: function fits form. J Gen Physiol 122(5):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Drain P, Li L, Wang J (1998) KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci U S A 95(23):13953–13958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drain P, Geng X, Li L (2004) Concerted gating mechanism underlying KATP channel inhibition by ATP. Biophys J 86(4):2101–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Babenko AP, Bryan J (2002) SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J Biol Chem 277(46):43997–44004

    Article  CAS  PubMed  Google Scholar 

  47. Yamada M, Kurachi Y (2004) The nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels. Mol Pharmacol 65(5):1198–1207

    Article  CAS  PubMed  Google Scholar 

  48. Dong K, Tang LQ, MacGregor GG, Leng Q, Hebert SC (2005) Novel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces. EMBO J 24(7):1318–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Campbell JD, Proks P, Lippiat JD, Sansom MS, Ashcroft FM (2004) Identification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains. Diabetes 53(suppl 3):S123–S127

    Article  CAS  PubMed  Google Scholar 

  50. Masia R, Nichols CG (2008) Functional clustering of mutations in the dimer interface of the nucleotide binding folds of the sulfonylurea receptor. J Biol Chem 283(44):30322–30329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433(7028):876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharma N, Crane A, Gonzalez G, Bryan J, Aguilar-Bryan L (2000) Familial hyperinsulinism and pancreatic beta-cell ATP-sensitive potassium channels. Kidney Int 57(3):803–808

    Article  CAS  PubMed  Google Scholar 

  53. Otonkoski T, Ammala C, Huopio H, Cote GJ, Chapman J, Cosgrove K, Ashfield R, Huang E, Komulainen J, Ashcroft FM, Dunne MJ, Kere J, Thomas PM (1999) A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes 48(2):408–415

    Article  CAS  PubMed  Google Scholar 

  54. Misler S, Giebisch G (1992) ATP-sensitive potassium channels in physiology, pathophysiology, and pharmacology. Curr Opin Nephrol Hypertens 1(1):21–33

    Article  CAS  PubMed  Google Scholar 

  55. Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48(6):1341–1347

    Article  CAS  PubMed  Google Scholar 

  56. Mikhailov MV, Mikhailova EA, Ashcroft SJ (2001) Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel. FEBS Lett 499(1–2):154–160

    Article  CAS  PubMed  Google Scholar 

  57. Gribble FM, Tucker SJ, Ashcroft FM (1997) The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J Physiol 504(pt 1):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol Sci 21(11):439–445

    Article  CAS  PubMed  Google Scholar 

  59. Moreau C, Jacquet H, Prost AL, D’hahan N, Vivaudou M (2000) The molecular basis of the specificity of action of K(ATP) channel openers. EMBO J 19(24):6644–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moreau C, Gally F, Jacquet-Bouix H, Vivaudou M (2005) The size of a single residue of the sulfonylurea receptor dictates the effectiveness of K ATP channel openers. Mol Pharmacol 67(4):1026–1033

    Article  CAS  PubMed  Google Scholar 

  61. Moreau C, Prost AL, Derand R, Vivaudou M (2005) SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38(6):951–963

    Article  CAS  PubMed  Google Scholar 

  62. Hu LF, Wang S, Shi XR, Yao HH, Sun YH, Ding JH, Liu SY, Hu G (2005) ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level. J Neurochem 94(6):1570–1579

    Article  CAS  PubMed  Google Scholar 

  63. Costa AD (2009) Iptakalim: a new or just another KCO? Cardiovasc Res 83(3):417–418

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Zhang YL, Tang XC, Feng HS, Hu G (2004) Targeting ischemic stroke with a novel opener of ATP-sensitive potassium channels in the brain. Mol Pharmacol 66(5):1160–1168

    Article  CAS  PubMed  Google Scholar 

  65. Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol 116(5):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shyng SL, Barbieri A, Gumusboga A, Cukras C, Pike L, Davis JN, Stahl PD, Nichols CG (2000) Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase. Proc Natl Acad Sci U S A 97(2):937–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quinn KV, Giblin JP, Tinker A (2004) Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel. Circ Res 94(10):1359–1366

    Article  CAS  PubMed  Google Scholar 

  68. Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C (2007) PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol 293(3):R1205–R1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen PC, Kryukova YN, Shyng SL (2013) Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 288(47):34098–34109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Y, Shyng SL, Chen PC (2015) Concerted trafficking regulation of Kv2.1 and KATP Channels by leptin in pancreatic beta-cells. J Biol Chem 290(50):29676–29690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cui N, Kang Y, He Y, Leung YM, Xie H, Pasyk EA, Gao X, Sheu L, Hansen JB, Wahl P, Tsushima RG, Gaisano HY (2004) H3 domain of syntaxin 1A inhibits KATP channels by its actions on the sulfonylurea receptor 1 nucleotide-binding folds-1 and -2. J Biol Chem 279(51):53259–53265

    Article  CAS  PubMed  Google Scholar 

  72. Kang Y, Leung YM, Manning-Fox JE, Xia F, Xie H, Sheu L, Tsushima RG, Light PE, Gaisano HY (2004) Syntaxin-1A inhibits cardiac KATP channels by its actions on nucleotide binding folds 1 and 2 of sulfonylurea receptor 2A. J Biol Chem 279(45):47125–47131

    Article  CAS  PubMed  Google Scholar 

  73. Pasyk EA, Kang Y, Huang X, Cui N, Sheu L, Gaisano HY (2004) Syntaxin-1A binds the nucleotide-binding folds of sulphonylurea receptor 1 to regulate the KATP channel. J Biol Chem 279(6):4234–4240

    Article  CAS  PubMed  Google Scholar 

  74. Chao C, Liang T, Kang Y, Lin X, Xie H, Feng ZP, Gaisano HY (2011) Syntaxin-1A inhibits KATP channels by interacting with specific conserved motifs within sulfonylurea receptor 2A. J Mol Cell Cardiol 51(5):790–802

    Article  CAS  PubMed  Google Scholar 

  75. Chang N, Liang T, Lin X, Kang Y, Xie H, Feng ZP, Gaisano HY (2011) Syntaxin-1A interacts with distinct domains within nucleotide-binding folds of sulfonylurea receptor 1 to inhibit beta-cell ATP-sensitive potassium channels. J Biol Chem 286(26):23308–23318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen PC, Bruederle CE, Gaisano HY, Shyng SL (2011) Syntaxin 1A regulates surface expression of {beta}-cell ATP-sensitive potassium channels. Am J Physiol Cell Physiol 300(3):C506–C516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng B, Kang Y, Elias CL, He Y, Xie H, Hansen JB, Wahl P, Gaisano HY (2007) The actions of a novel potent islet beta-cell specific ATP-sensitive K+ channel opener can be modulated by syntaxin-1A acting on sulfonylurea receptor 1. Diabetes 56(8):2124–2134

    Article  CAS  PubMed  Google Scholar 

  78. Ng B, Kang Y, Xie H, Sun H, Gaisano HY (2008) Syntaxin-1A inhibition of P-1075, cromakalim, and diazoxide actions on mouse cardiac ATP-sensitive potassium channel. Cardiovasc Res 80(3):365–374

    Article  CAS  PubMed  Google Scholar 

  79. Bernardi H, Fosset M, Lazdunski M (1992) ATP/ADP binding sites are present in the sulfonylurea binding protein associated with brain ATP-sensitive K+ channels. Biochemistry 31(27):6328–6332

    Article  CAS  PubMed  Google Scholar 

  80. Roper J, Ashcroft FM (1995) Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch 430(1):44–54

    Article  CAS  PubMed  Google Scholar 

  81. Stanford IM, Lacey MG (1996) Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata. Neuroscience 74(2):499–509

    Article  CAS  PubMed  Google Scholar 

  82. Ohno-Shosaku T, Yamamoto C (1992) Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflugers Arch 422(3):260–266

    Article  CAS  PubMed  Google Scholar 

  83. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 514(Pt 2):327–341

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ashford ML, Boden PR, Treherne JM (1990) Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br J Pharmacol 101(3):531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 415(4):479–483

    Article  CAS  PubMed  Google Scholar 

  86. Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K, Abe H (2002) Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101(1–2):23–32

    Article  CAS  PubMed  Google Scholar 

  87. Fujimura N, Tanaka E, Yamamoto S, Shigemori M, Higashi H (1997) Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J Neurophysiol 77(1):378–385

    CAS  PubMed  Google Scholar 

  88. Trapp S, Ballanyi K (1995) KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro. J Physiol 487(pt 1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dunn-Meynell AA, Rawson NE, Levin BE (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 814(1–2):41–54

    Article  CAS  PubMed  Google Scholar 

  90. Liss B, Roeper J (2001) A role for neuronal K(ATP) channels in metabolic control of the seizure gate. Trends Pharmacol Sci 22(12):599–601

    Article  CAS  PubMed  Google Scholar 

  91. Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484(3):313–330

    Article  CAS  PubMed  Google Scholar 

  92. Sun HS, Feng ZP, Miki T, Seino S, French RJ (2006) Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol 95(4):2590–2601

    Article  CAS  PubMed  Google Scholar 

  93. Sun HS, Feng ZP, Barber PA, Buchan AM, French RJ (2007) Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo. Neuroscience 144(4):1509–1515

    Article  CAS  PubMed  Google Scholar 

  94. Mourre C, Ben AY, Bernardi H, Fosset M, Lazdunski M (1989) Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486(1):159–164

    Article  CAS  PubMed  Google Scholar 

  95. Taborsky GJ Jr, Ahren B, Havel PJ (1998) Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47(7):995–1005

    Article  CAS  PubMed  Google Scholar 

  96. Karschin C, Ecke C, Ashcroft FM, Karschin A (1997) Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 401(1):59–64

    Article  CAS  PubMed  Google Scholar 

  97. Pierrefiche O, Bischoff AM, Richter DW (1996) ATP-sensitive K+ channels are functional in expiratory neurones of normoxic cats. J Physiol 494(pt 2):399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Allen TG, Brown DA (2004) Modulation of the excitability of cholinergic basal forebrain neurones by KATP channels. J Physiol 554(pt 2):353–370

    Article  CAS  PubMed  Google Scholar 

  99. Tanner GR, Lutas A, Martinez-Francois JR, Yellen G (2011) Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J Neurosci 31(23):8689–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haller M, Mironov SL, Karschin A, Richter DW (2001) Dynamic activation of K(ATP) channels in rhythmically active neurons. J Physiol 537(pt 1):69–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yamamoto S, Tanaka E, Higashi H (1997) Mediation by intracellular calcium-dependent signals of hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J Neurophysiol 77(1):386–392

    CAS  PubMed  Google Scholar 

  102. de Garcia AS, Franke H, Pissarek M, Nieber K, Illes P (1999) Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices during hypoxia. Neurosci Lett 273(1):13–16

    Article  Google Scholar 

  103. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292(5521):1543–1546

    Article  CAS  PubMed  Google Scholar 

  104. Heurteaux C, Bertaina V, Widmann C, Lazdunski M (1993) K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci U S A 90(20):9431–9435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, Mahy N, Rodriguez MJ (2012) ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol 235(1):282–296

    Article  CAS  PubMed  Google Scholar 

  106. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12(4):433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, Wood TL, Willing LB, Stannard B, Hernandez-Sanchez C, Mobbs C, Virsolvy A, LeRoith D (2004) Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Mol Cell Neurosci 25(4):585–593

    Article  CAS  PubMed  Google Scholar 

  108. Gross GJ, Fryer RM (1999) Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 84(9):973–979

    Article  CAS  PubMed  Google Scholar 

  109. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    CAS  PubMed  Google Scholar 

  110. Johansen FF (1993) Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations. Acta Neurol Scand Suppl 150:1–32

    CAS  PubMed  Google Scholar 

  111. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247

    Article  CAS  PubMed  Google Scholar 

  112. Autheman D, Sheldon RA, Chaudhuri N, von Arx S, Siegenthaler C, Ferriero DM, Christen S (2012) Glutathione peroxidase overexpression causes aberrant ERK activation in neonatal mouse cortex after hypoxic preconditioning. Pediatr Res 72(6):568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34(8):1981–1986

    Article  CAS  PubMed  Google Scholar 

  114. Sheldon RA, Aminoff A, Lee CL, Christen S, Ferriero DM (2007) Hypoxic preconditioning reverses protection after neonatal hypoxia-ischemia in glutathione peroxidase transgenic murine brain. Pediatr Res 61(6):666–670

    Article  CAS  PubMed  Google Scholar 

  115. Xu B, Xiao AJ, Chen W, Turlova E, Liu R, Barszczyk A, Sun CL, Liu L, Tymianski M, Feng ZP, Sun HS (2015) Neuroprotective effects of a PSD-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol. [Epub ahead of print]

    Google Scholar 

  116. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CL, Britto LR, Feng ZP, Sun HS (2015) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Xiao AJ, Chen W, Xu B, Liu R, Turlova E, Barszczyk A, Sun CL, Liu L, Deurloo M, Wang GL, Feng ZP, Sun HS (2015) Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs 13(1):29–47

    Article  CAS  Google Scholar 

  118. Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CY, Quan Y, Liu B, Pei L, Sun CL, Deurloo M, Feng ZP (2015) Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 263:161–171

    Article  CAS  PubMed  Google Scholar 

  119. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  120. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  PubMed  Google Scholar 

  121. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15(2):177–182

    Article  CAS  PubMed  Google Scholar 

  122. Horimoto H, Gaudette GR, Saltman AE, Krukenkamp IB (2000) The role of nitric oxide, K(+)(ATP) channels, and cGMP in the preconditioning response of the rabbit. J Surg Res 92(1):56–63

    Article  CAS  PubMed  Google Scholar 

  123. Munoz A, Nakazaki M, Goodman JC, Barrios R, Onetti CG, Bryan J, Guilar-Bryan L (2003) Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels. Stroke 34(1):164–170

    Article  CAS  PubMed  Google Scholar 

  124. Asemu G, Papousek F, Ostadal B, Kolar F (1999) Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J Mol Cell Cardiol 31(10):1821–1831

    Article  CAS  PubMed  Google Scholar 

  125. Testai L, Rapposelli S, Calderone V (2007) Cardiac ATP-sensitive potassium channels: a potential target for an anti-ischaemic pharmacological strategy. Cardiovasc Hematol Agents Med Chem 5(1):79–90

    Article  CAS  PubMed  Google Scholar 

  126. Kim KO, Choe G, Chung SH, Kim CS (2008) Delayed pharmacological pre-conditioning effect of mitochondrial ATP-sensitive potassium channel opener on neurologic injury in a rabbit model of spinal cord ischemia. Acta Anaesthesiol Scand 52(2):236–242

    Article  CAS  PubMed  Google Scholar 

  127. Liu D, Lu C, Wan R, Auyeung WW, Mattson MP (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22(4):431–443

    Article  CAS  PubMed  Google Scholar 

  128. Mayanagi K, Gaspar T, Katakam PV, Busija DW (2007) Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res 1168:106–111

    Article  CAS  PubMed  Google Scholar 

  129. Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW (2002) MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 283(3):H1005–H1011

    Article  CAS  PubMed  Google Scholar 

  130. Mayanagi K, Gaspar T, Katakam PV, Kis B, Busija DW (2007) The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27(2):348–355

    Article  CAS  PubMed  Google Scholar 

  131. Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmer E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86(4):966–979

    Article  CAS  PubMed  Google Scholar 

  132. Bantel C, Maze M, Trapp S (2009) Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 110(5):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feng, ZP., Sun, HS. (2017). ATP-Sensitive Potassium Channels (KATP) Play a Role in Hypoxic Preconditioning Against Neonatal Hypoxic-Ischemic Brain Injury. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics