Skip to main content

Unpuzzling the Comorbid Type 2 Diabetes and Hypertension-Related Cognitive Dysfunction and Stroke

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Abstract

Type 2 diabetes (T2D) is a highly disabling, major socioeconomic burden, whose long-term complications (particularly those affecting the central nervous system (CNS), as Alzheimer disease (AD)) can be further exacerbated by the frequent development of comorbid hypertension. Although the precise mechanisms involved herein remain elusive, it is conceivable that chronic T2D-related brain insulin resistance (IRES) and hyperglycemia may crosstalk with an overactivated brain renin-angiotensin-II-aldosterone system (RAAS) further potentiating the hypertension-related injury and culminating in cognitive dysfunction and AD. Indeed, several studies showed the contribution of abnormal RAAS activation upon hypertension per se to the pathophysiology of CNS disorders, such as stroke and AD. However, most of this available knowledge relies on the indirect effects of pharmacological inhibition of RAAS by drugs belonging either to the angiotensin II receptor blockers (ARBs) or angiotensin-converting enzyme (ACE) inhibitors (ACEi) groups. For instance, antihypertensive drugs have also shown anti-neuroinflammatory properties, widely known to play a pivotal role in brain and cognitive dysfunction.

In sum, albeit during the last two decades a bulk of scientific knowledge has progressively unravelled the molecular mechanisms that lead to chronic T2D-related CNS injury, the information available regarding its exacerbation upon the quite frequent comorbid hypertension is still scarce and somehow controversial. In this perspective, we aim to briefly review some of the subcellular mechanisms (e.g., oxidative stress) that may underlie the hypertension-induced (per se or as a comorbidity to T2D) brain and cognitive dysfunction, vascular dementia (particularly AD), and stroke. We will also briefly discuss the pharmacological evidence on the neuroprotection afforded by antihypertensive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skyler JS (2004) Diabetes mellitus: pathogenesis and treatment strategies. J Med Chem 47:4113–4117

    Article  CAS  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S et al (1832) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta 2013:527–541

    Google Scholar 

  4. Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:15.1–15.16

    Article  CAS  Google Scholar 

  5. Diabetes fact sheet 312, http://www.who.int/mediacentre/factsheets/fs312/en/

  6. Campbell RK (2011) Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin Ther 33:511–527

    Article  CAS  PubMed  Google Scholar 

  7. Pierce M, Keen H, Bradley C (1995) Risk of diabetes in offspring of parents with Non-insulin-dependent diabetes. Diabet Med 12:6–13

    Article  CAS  PubMed  Google Scholar 

  8. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    Article  CAS  PubMed  Google Scholar 

  9. Reichard P, Nilsson BY, Rosenqvist U (1993) The effect of long-term intensified insulin treatment on the development of microsvacular complications of diabetes mellitus. N Engl J Med 329:304–309

    Article  CAS  PubMed  Google Scholar 

  10. Terry T, Raravikar K, Chokrungvaranon N, Reaven PD (2012) Does aggressive glycemic control benefit macrovascular and microvascular disease in Type 2 Diabetes?: Insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep 14:79–88

    Article  PubMed  Google Scholar 

  11. Estato V, Obadia N, Carvalho-Tavares J, Freitas FS, Reis P, Neto HCF (2013) Blockade of the renin–angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats. Microvasc Res 87:41–49

    Article  CAS  PubMed  Google Scholar 

  12. Campbell RK, White JR Jr (2008) More choices than ever before—emerging therapies for type 2 diabetes. Diabetes Educ 34:518–534

    Article  PubMed  Google Scholar 

  13. Gavin JR, Stolar MW, Freeman JS, Spellman CW (2010) Improving outcomes in patients with type 2 diabetes mellitus: practical solutions for clinical challenges. J Am Osteopath Assoc 110:S2–S14

    PubMed  Google Scholar 

  14. Morsink LM, Smits MM, Diamant M (2013) Advances in pharmacologic therapies for type 2 diabetes. Curr Atheroscler Rep 15:302

    Article  PubMed  CAS  Google Scholar 

  15. Buse J (2000) Combining insulin and oral agents. Am J Med 108:23S–32S

    Article  CAS  PubMed  Google Scholar 

  16. Cignarelli A, Giorgino F, Vettor R (2013) Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 119:139–150

    Article  CAS  PubMed  Google Scholar 

  17. Woerle HJ, Neumann C, Zschau S, Tenner S, Irsigler A, Schirra J (2007) Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res Clin Pract 77:280–285

    Article  CAS  PubMed  Google Scholar 

  18. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R et al (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 29:1963–1972

    Article  PubMed  Google Scholar 

  19. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW (2008) 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    Article  CAS  PubMed  Google Scholar 

  20. Riddle MC (2005) Glycemic management of type 2 diabetes: an emerging strategy with oral agents, insulins, and combinations. Endocrinol Metab Clin North Am 34:77–98

    Article  CAS  PubMed  Google Scholar 

  21. Olverling A, Huang Z, NystrÖm T, Sjoholm A (2013) Acute regulation of pancreatic islet microcirculation and glycaemia by telmisartan and ramipril: discordant effects between normal and Type 2 diabetic rats. Clin Sci 125:433–438

    Article  CAS  PubMed  Google Scholar 

  22. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7:184–190

    Article  PubMed  Google Scholar 

  23. Mooradian AD (1988) Diabetic complications of the central nervous system. Endocr Rev 9:346–356

    Article  CAS  PubMed  Google Scholar 

  24. Strachan MWJ, Reynolds RM, Frier BM, Mitchell RJ, Price JF (2008) The relationship between type 2 diabetes and dementia. Br Med Bull 88:131–146

    Article  CAS  PubMed  Google Scholar 

  25. Xu WL, Qiu CX, Wahlin Å, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project A 6-year follow-up study. Neurology 63:1181–1186

    Article  CAS  PubMed  Google Scholar 

  26. Mogensen CE, Christensen CK (1984) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311:89–93

    Article  CAS  PubMed  Google Scholar 

  27. Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D et al (2010) Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 9:399–417

    Article  PubMed  Google Scholar 

  28. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38:420–428

    Article  CAS  PubMed  Google Scholar 

  29. Tchistiakova E, Anderson ND, Greenwood CE, MacIntosh BJ (2014) Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults. Neuroimage Clin 5:36–41

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosenthal T, Younis F, Alter A (2010) Combating combination of hypertension and diabetes in different Rat models. Pharmaceuticals 3:916–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olearczyk JJ, Quigley JE, Mitchell BC, Yamamoto T, Kim IH, Newman JW et al (2009) Administration of a substituted adamantly-urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats. Clin Sci 116:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Chen X, Dang G, Zhao Y, Ouyang F, Su Z et al (2015) Hypertension criterion for stroke prevention—to strengthen the principle of individualization in guidelines. J Clin Hypertens 2015:1–7

    Google Scholar 

  33. Flack JM, Peters R, Shafi T, Alrefai H, Nasser SA, Crook E (2003) Prevention of hypertension and its complications: theoretical basis and guidelines for treatment. J Am Soc Nephrol 14:S92–S98

    Article  PubMed  Google Scholar 

  34. Lindekleiv H, Sandvei MS, Romundstad PR, Wilsgaard T, Njolstad I, Ingebrigtsen T et al (2012) Joint effect of modifiable risk factors on the risk of aneurysmal subarachnoid hemorrhage—a cohort study. Stroke 43:1885–1889

    Article  PubMed  Google Scholar 

  35. Chen S, Zeng L, Hu Z (2014) Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol 261:2061–2078

    Article  PubMed  PubMed Central  Google Scholar 

  36. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    Article  CAS  PubMed  Google Scholar 

  37. Skoog I, Gustafson D (2006) Update on hypertension and Alzheimer’s disease. Neurol Res 28:605–611

    Article  PubMed  Google Scholar 

  38. Kuller LH, Lopez OL, Jagust WJ, Becker JT, Dekosky ST, Lyketsos C et al (2005) Determinants of vascular dementia in the Cardiovascular Health Cognition Study. Neurology 64:1548–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alexander RW (2006) Leukocyte and endothelial angiotensin II type 1 receptors and microvascular thrombotic and inflammatory responses to hypercholesterolemia. Arterioscler Thromb Vasc Biol 26:240–241

    Article  CAS  PubMed  Google Scholar 

  40. Carnevale D, Mascio G, D'Andrea I, Fardella V, Bell RD, Branchi I et al (2012) Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation End products in brain vasculature. Hypertension 60:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korenovaa M, Zilka N, Stozickaa Z, Bugos O, Vanicky I, Novak M (2009) NeuroScale, the battery of behavioral tests with novel scoring system for phenotyping of transgenic rat model of tauopathy. J Neurosci Methods 177:108–114

    Article  Google Scholar 

  42. Sabbatini M, Catalani A, Consoli C, Marletta N, Tomassoni D, Avola R (2002) The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mech Ageing Dev 123:547–559

    Article  CAS  PubMed  Google Scholar 

  43. Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N et al (2014) Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated Tau with inflammatory responses in aged spontaneously hypertensive stroke resistant Rat. J Stroke Cerebrovasc Dis 23:2580–2590

    Article  PubMed  Google Scholar 

  44. Petrova M, Prokopenko S, Pronina E, Mozheyko E (2010) Diabetes type 2, hypertension and cognitive dysfunction in middle age women. J Neurol Sci 299:39–41

    Article  PubMed  Google Scholar 

  45. Ohshima K, Mogi M, Horiuchi M (2013) Therapeutic approach for neuronal disease by regulating renin-angiotensin system. Curr Hypertens Rev 9:99–107

    Article  CAS  PubMed  Google Scholar 

  46. Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    CAS  PubMed  Google Scholar 

  47. Griendling KK, Murphy TJ, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828

    Article  CAS  PubMed  Google Scholar 

  48. Chang SY, Chen YW, Chenier I, Le Minh TS, Angiotensin ZSL, Type II II (2011) Receptor deficiency accelerates the development of nephropathy in type I diabetes via oxidative stress and ACE2. Exp Diabetes Res. doi:10.1155/2011/521076

    Google Scholar 

  49. de Queiroz TM, Monteiro MMO, Braga VA (2013) Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives. Front Physiol 4:105

    Article  PubMed  PubMed Central  Google Scholar 

  50. Regenhardt RW, Bennion DM, Sumners C (2014) Cerebroprotective action of angiotensin peptides in stroke. Clin Sci 126:195–205

    Article  CAS  PubMed  Google Scholar 

  51. Bader M, Ganten D (2008) Update on tissue renin–angiotensin systems. J Mol Med 86:615–621

    Article  CAS  PubMed  Google Scholar 

  52. Sadjadi J, Puttaparthi K, Li L, Welborn MB, Rogers TE, Moe O et al (2002) Upregulation of autocrine-paracrine reninangiotensin systems in chronic renovascular hypertension. J Vasc Surg 36:386–392

    Article  PubMed  Google Scholar 

  53. Campos RR (2009) Oxidative stress in the brain and arterial hypertension. Hypertens Res 32:1047–1048

    Article  PubMed  Google Scholar 

  54. Campos RR, Oliveira-Sales EB, Nishi ÉE, Boim MA, Dolnikoff MS, Bergamaschi CT (2011) The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol 38:144–152

    Article  CAS  PubMed  Google Scholar 

  55. McGuire DK, Winterfield JR, Rytlewski JA, Ferrannini E (2008) Blocking the renin-angiotensin-aldosterone system to prevent diabetes mellitus. Diabetes Vasc Dis Res 5:59–66

    Article  Google Scholar 

  56. Carlsson PO (2001) The renin-angiotensin system in the endocrine pancreas. J Pancreas 2:26–32

    CAS  Google Scholar 

  57. Skipworth JRA, Szabadkai G, Olde Damink SWM, Leung PS, Humphries SE, Montgomery HE (2011) Review article: pancreatic renin–angiotensin systems in health and disease. Aliment Pharmacol Ther 34:840–852

    Article  CAS  PubMed  Google Scholar 

  58. Cheng Q, Leung PS (2011) An update on the islet renin–angiotensin system. Peptides 32:1087–1095

    Article  CAS  PubMed  Google Scholar 

  59. Dzau V, Braunwald E (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121:1244–1263

    Article  CAS  PubMed  Google Scholar 

  60. Stegbauer J, Coffman TM (2011) New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens 20:84–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ichiki T, Miyazaki R, Kamiharaguchi A, Hashimoto T, Matsuura H, Kitamoto S et al (2012) Resveratrol attenuates angiotensin II-induced senescence of vascular smooth muscle cells. Regul Pept 177:35–39

    Article  CAS  PubMed  Google Scholar 

  62. Saavedra JM (1992) Brain and pituitary angiotensin. Endocr Rev 13:329–380

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L et al (2006) AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke 37:1271–1276

    Article  CAS  PubMed  Google Scholar 

  64. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY et al (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47:17–28

    Article  CAS  PubMed  Google Scholar 

  65. Villapol S, Saavedra JM (2014) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28:289–299

    Article  PubMed  Google Scholar 

  66. Dampney RAL, Tan PSP, Sheriff MJ, Fontes MAP, Horiuchi J (2007) Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: the push-pull hypothesis. Curr Hypertens Rep 9:222–227

    Article  CAS  PubMed  Google Scholar 

  67. Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG (2006) Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 47:1054–1061

    Article  CAS  PubMed  Google Scholar 

  68. Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF (2002) Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 40:552–559

    Article  CAS  PubMed  Google Scholar 

  69. Braga VA (2010) Dietary salt enhances angiotensin-II-induced superoxide formation in the rostral ventrolateral medulla. Auton Neurosci 155:14–18

    Article  CAS  PubMed  Google Scholar 

  70. Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16:293–299

    Article  CAS  PubMed  Google Scholar 

  71. Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE (2008) AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 120:292–316

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M et al (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 19:617–619

    CAS  PubMed  Google Scholar 

  73. Padia SH, Carey RM (2013) AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch 465:99–110

    Article  CAS  PubMed  Google Scholar 

  74. Herrera M, Garvin JL (2010) Angiotensin II stimulates thick ascending limb NO production via AT2 receptors and Akt1-dependent nitric-oxide synthase 3 (NOS3) activation. J Biol Chem 285:14932–14940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Horiuchi M, Hayashida W, Akishita M, Tamura K, Daviet L, Lehtonen JYA et al (1999) Stimulation of different subtypes of angiotensin II receptors, AT1 and AT2 receptors, regulates STAT activation by negative crosstalk. Circ Res 84:876–882

    Article  CAS  PubMed  Google Scholar 

  76. Suematsu M, Suzuki H, Delano FA, Schimd-Schonbein GW (2002) The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 9:259–276

    Article  CAS  PubMed  Google Scholar 

  77. Tanito M, Nakamura H, Kwon YW, Teratani A, Masutani H, Shioji K et al (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97

    Article  CAS  PubMed  Google Scholar 

  78. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S et al (2004) Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension 24:841–848

    Article  CAS  Google Scholar 

  79. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510

    Article  CAS  PubMed  Google Scholar 

  80. Larsen MK, Matchkov VV (2016) Hypertension and physical exercise: the role of oxidative stress. Medicina 52:19–27

    Article  Google Scholar 

  81. Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  82. Abe K, Yuki S, Kogure K (1988) Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 194:480–485

    Article  Google Scholar 

  83. Cui J, Holmes EH, Greene TG, Liu PK (2000) Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J 14:955–967

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  CAS  PubMed  Google Scholar 

  85. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK (1996) Angiotensin II–mediated hypertension in the Rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J Clin Invest 97:1916–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95:210–216

    Article  CAS  PubMed  Google Scholar 

  87. Davisson RL, Zimmerman MC (2010) Angiotensin-II, oxidant signalling, and hypertension: down to a T? Hypertension 55:228–230

    Article  CAS  PubMed  Google Scholar 

  88. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C et al (2010) Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–283

    Article  CAS  PubMed  Google Scholar 

  89. Wolin MS (2005) Loss of vascular regulation by soluble guanylate cyclase is emerging as a key target of the hypertensive disease process. Hypertension 45:1068–1069

    Article  CAS  PubMed  Google Scholar 

  90. Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 71:247–258

    Article  CAS  PubMed  Google Scholar 

  91. Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R et al (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    Article  CAS  PubMed  Google Scholar 

  92. Mogi M, Li JM, Iwanami J, Min LJ, Tsukuda K, Iwai M et al (2006) Angiotensin II type-2 receptor stimulation prevents neural damage by transcriptional activation of methyl methanesulfonate sensitive 2. Hypertension 48:141–148

    Article  CAS  PubMed  Google Scholar 

  93. Li G, Rhew IC, Shofer JB, Kukull WA, Breitner JCS, Peskind E et al (2007) Age-varying association between blood pressure and risk of dementia in those aged 65 and older: a community-based prospective cohort study. J Am Geriatr Soc 55:1161–1167

    Article  PubMed  Google Scholar 

  94. Mogi M, Horiuchi M (2013) Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr Gerontol Int 13:13–18

    Article  PubMed  Google Scholar 

  95. Rizzi L, Rosset I, Roriz-Cruz M (2014) Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed Res Int. doi:10.1155/2014/908915

    PubMed Central  Google Scholar 

  96. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  PubMed Central  Google Scholar 

  97. Panza F, Solfrizzi V, Frisardi V, Capurso C, D’Introno A, Colacicco AM et al (2009) Disease-modifying approach to the treatment of Alzheimer’s disease. Drugs Aging 26:537–555

    Article  CAS  PubMed  Google Scholar 

  98. Panza F, D’Introno A, Colacicco AM, Basile AM, Capurso C, Kehoe PG et al (2004) Vascular risk and genetics of sporadic late-onset Alzheimer’s disease. J Neural Transm 111:69–89

    Article  CAS  PubMed  Google Scholar 

  99. Solfrizzi V, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Santamato A et al (2008) Dietary fatty acids, age-related cognitive decline and mild cognitive impairment. J Nutr Health Aging 12:382–386

    Article  CAS  PubMed  Google Scholar 

  100. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K et al (2001) Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 322:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nagai M, Hoshide S, Kario K (2010) Hypertension and dementia. Am J Hypertens 23:116–124

    Article  PubMed  Google Scholar 

  102. Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR et al (2004) Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 43:10–17

    Article  CAS  PubMed  Google Scholar 

  103. Yagi S, Akaike M, Ise T, Ueda Y, Iwase T, Sata M (2013) Renin–angiotensin–aldosterone system has a pivotal role in cognitive impairment. Hypertens Res 36:753–758

    Article  CAS  PubMed  Google Scholar 

  104. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2008) Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke 39:349–354

    Article  PubMed  PubMed Central  Google Scholar 

  105. Son SJ, Kim J, Lee E, Park JY, Namkoong K, Hong CH et al (2015) Effect of hypertension on the resting-state functional connectivity in patients with Alzheimer’s disease (AD). Arch Gerontol Geriatr 60:210–216

    Article  PubMed  Google Scholar 

  106. Al-Rubeaan K, Al-Hussain F, Youssef AM, Subhani SN, Al-Sharqawi AH, Ibrahim HM (2016) Ischemic stroke and its risk factors in a registry-based large cross-sectional diabetic cohort in a country facing a diabetes epidemic. J Diabetes Res 2016:1–9

    Article  Google Scholar 

  107. Inaba S, Iwai M, Tomono Y, Senba I, Furuno M, Kanno H et al (2009) Exaggeration of focal cerebral ischemia in transgenic mice carrying human renin and human angiotensinogen genes. Stroke 40:597–603

    Article  CAS  PubMed  Google Scholar 

  108. Saavedra JM (2016) Evidence to consider angiotensin II receptor blockers for the treatment of early Alzheimer’s disease. Cell Mol Neurobiol. doi:10.1007/s10571-015-0327-y

    PubMed  Google Scholar 

  109. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  110. Reinecke K, Lucius R, Reinecke A, Rickert U, Herdegen T, Unger T (2003) Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kB. FASEB J 17:2094–2096

    CAS  PubMed  Google Scholar 

  111. Laflamme L, de Gasparo M, Gallo JM, Payet MD, Gallo-Payet N (1996) Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells—effect counteracted by the AT1 receptors. J Biol Chem 271:22729–22735

    Article  CAS  PubMed  Google Scholar 

  112. Gendron L, Laflamme L, Rivard N, Asselin C, Payet MD, Gallo-Payet N (1999) Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108–15 cells. Mol Endocrinol 13:1615–1626

    Article  CAS  PubMed  Google Scholar 

  113. Côté F, Laflamme L, Payet MD, Gallo-Payet N (1998) Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells. Endocr Res 24:403–407

    Article  PubMed  Google Scholar 

  114. Côté F, Do TH, Laflamme L, Gallo JM, Gallo-Payet N (1999) Activation of the AT2 receptor of angiotensin II induces neurite outgrowth and cell migration in microexplant cultures of the cerebellum. J Biol Chem 274:31686–31692

    Article  PubMed  Google Scholar 

  115. Iwanami J, Mogi M, Tsukuda K, Min LJ, Sakata A, Jing F et al (2011) Effect of angiotensin II type 2 receptor deletion in hematopoietic cells on brain ischemia-reperfusion injury. Hypertension 58:404–409

    Article  CAS  PubMed  Google Scholar 

  116. Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Horwitz RI (2002) Insulin resistance and risk for stroke. Neurology 59:809–815

    Article  CAS  PubMed  Google Scholar 

  117. McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE et al (2005) The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 28:385–390

    Article  PubMed  Google Scholar 

  118. Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS (2004) Association of the metabolic syndrome with history of myocardial infarction and stroke in the third national health and nutrition examination survey. Circulation 109:42–46

    Article  PubMed  Google Scholar 

  119. Hishinuma A, Majima M, Kurabayashi H (2009) Is insulin resistance related to recurrence of stroke or incident of ischemic heart disease in patients with stroke? A preliminary report. J Stroke Cerebrovasc Dis 18:294–297

    Article  PubMed  Google Scholar 

  120. Hu G, Jousilahti P, Sarti C, Antikainen R, Tuomilehto J (2006) The effect of diabetes and stroke at baseline and during follow-up on stroke mortality. Diabetologia 49:2309–2316

    Article  CAS  PubMed  Google Scholar 

  121. Kim B, Sullivan KA, Backus C, Feldman EL (2011) Cortical neurons develop insulin resistance and blunted Akt signaling: a potential mechanism contributing to enhanced ischemic injury in diabetes. Antioxid Redox Signal 14:1829–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252

    Article  CAS  PubMed  Google Scholar 

  123. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al (2007) Guidelines for the management of arterial hypertension. Eur Heart J 28:1462–1536

    PubMed  Google Scholar 

  124. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M et al (2013) ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J 34:2159–2219

    Article  PubMed  Google Scholar 

  125. Ravandi A, Teo KK (2009) Blocking the renin-angiotensin system: dual versus mono-therapy. Expert Rev Cardiovasc Ther 7:667–674

    Article  CAS  PubMed  Google Scholar 

  126. Parsons C, Murad MH, Andersen S, Mookadam F, Labonte H (2016) The effect of antihypertensive treatment on the incidence of stroke and cognitive decline in the elderly: a meta-analysis. Future Cardiol 12:237–248

    Article  CAS  PubMed  Google Scholar 

  127. Brunström M, Carlberg B (2016) Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. 2016. BMJ 352:i717. doi:10.1136/bmj.i717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hsu CY, Huang CC, Chan WL, Huang PH, Chiang CH, Chen TJ (2013) Angiotensin-receptor blockers and risk of Alzheimer’s disease in hypertension population—a nationwide cohort study. Circ J 77:405–410

    Article  PubMed  Google Scholar 

  129. Kehoe PG, Miners S, Love S (2009) Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci 32:619–628

    Article  CAS  PubMed  Google Scholar 

  130. Kehoe PG, Wilcock GK (2007) Is inhibition of the renin–angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol 6:373–378

    Article  CAS  PubMed  Google Scholar 

  131. Igase M, Kohara K, Miki T (2012) The association between hypertension and dementia in the elderly. Int J Hypertens. doi:10.1155/2012/320648

    PubMed  Google Scholar 

  132. McFarlane SI (2009) Role of angiotensin receptor blockers in diabete: implications of recent clinical trials. Expert Rev Cardiovasc Ther 7:1363–1371

    Article  CAS  PubMed  Google Scholar 

  133. Ismail H, Mitchell R, McFarlane SI, Makaryus AN (2010) Pleiotropic effects of inhibitors of the RAAS in the diabetic population: above and beyond blood pressure lowering. Curr Diab Rep 10:32–36

    Article  CAS  PubMed  Google Scholar 

  134. Huang Z, Ohno N, Terada N, Saitoh Y, Chen J, Ohno S (2013) Immunohistochemical detection of angiotensin II receptors in mouse cerebellum and adrenal gland using “in vivo cryotechnique”. Histochem Cell Biol 140:477–490

    Article  CAS  PubMed  Google Scholar 

  135. Kakuta H, Kurosaki E, Niimi T, Gato K, Kawasaki Y, Suwa A et al (2014) Distinct properties of telmisartan on agonistic activities for peroxisome proliferator-activated receptor g among clinically used angiotensin II receptor blockers: drug-target interaction analyses. J Pharmacol Exp Ther 349:10–20

    Article  PubMed  CAS  Google Scholar 

  136. Takai S, Kirimura K, Jin D, Muramatsu M, Yoshikawa K, Mino Y et al (2005) Significance of angiotensin II receptor blocker lipophilicities and their protective effect against vascular remodeling. Hypertens Res 28:593–600

    Article  CAS  PubMed  Google Scholar 

  137. Burgess E, Muirhead N, de Cotret PR, Chiu A, Pichette V, Tobe S et al (2008) Supramaximal dose of candesartan in proteinuric renal disease. J Am Soc Nephrol 20:893–900

    Article  CAS  Google Scholar 

  138. Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA et al (2009) Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet 374:1840–1848

    Article  CAS  PubMed  Google Scholar 

  139. Saavedra JM, Angiotensin II (2012) AT1 receptor blockers as treatments for inflammatory brain disorders. Clin Sci 123:567–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Saavedra JM, Sánchez-Lemus E, Benicky J (2011) Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology 36:1–18

    Article  CAS  PubMed  Google Scholar 

  141. Siragy HM (2009) The potential role of the angiotensin subtype 2 receptor in cardiovascular protection. Curr Hypertens Rep 11:260–262

    Article  CAS  PubMed  Google Scholar 

  142. Poon IO (2008) Effects of antihypertensive drug treatment on the risk of dementia and cognitive impairment. Pharmacotherapy 28:366–375

    Article  CAS  PubMed  Google Scholar 

  143. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H et al (2010) Angiotensin II sustains brain inflammation in mice via TGF-β. J Clin Invest 120:2782–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zanchetti A, Elmfeldt D (2006) Findings and implications of the Study on Cognition and Prognosis in the Elderly (SCOPE)—a review. Blood Press 15:71–79

    Article  PubMed  Google Scholar 

  145. Savoia C, Schiffrin EL (2007) Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci 112:375–384

    Article  CAS  PubMed  Google Scholar 

  146. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X et al (2007) Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 117:3393–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A et al (2008) Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun 375:446–449

    Article  CAS  PubMed  Google Scholar 

  148. Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F et al (2009) Cognitive deficit in amyloid-β–injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension 54:782–787

    Article  CAS  PubMed  Google Scholar 

  149. Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J et al (2011) Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 36:857–870

    Article  CAS  PubMed  Google Scholar 

  150. Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J et al (2006) Long-term Angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ. Eur J Pharmacol 552:112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pang T, Benicky J, Wang J, Orecna M, Sanchez-Lemus E, Saavedra JM (2012) Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes. J Hypertens 30:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou J, Ando H, Macova M, Dou J, Saavedra JM (2005) Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab 25:878–886

    Article  CAS  PubMed  Google Scholar 

  153. Sironi L, Gelosa P, Guerrini U, Banfi C, Crippa V, Brioschi M et al (2004) Anti-inflammatory effects of AT1 receptor blockade provide end-organ protection in stroke-prone rats independently from blood pressure fall. J Pharmacol Exp Ther 311:989–995

    Article  CAS  PubMed  Google Scholar 

  154. Hallevia H, Hazan-Halevyb I, Paranc E (2007) Modification of neutrophil adhesion to human endothelial cell line in acute ischemic stroke by dipyridamole and candesartan. Eur J Neurol 14:1002–1007

    Article  Google Scholar 

  155. Grammas P, Martinez J, Miller B (2011) Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med. doi:10.1017/S1462399411001918

    PubMed  Google Scholar 

  156. Kasahara Y, Taguchi A, Uno H, Nakano A, Nakagomi T, Hirose H et al (2010) Telmisartan suppresses cerebral injury in a murine model of transient focal ischemia. Brain Res 1340:70–80

    Article  CAS  PubMed  Google Scholar 

  157. Vargas R, Rincon J, Pedreanez A et al (2012) Role of angiotensin II in the brain inflammatory events during experimental diabetes in rats. Brain Res 1453:64–76

    Google Scholar 

  158. Ohrui T, Tomita N, Sato-Nakagawa T, Matsui T, Maruyama M, Niwa K et al (2004) Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 63:1324–1325

    Article  CAS  PubMed  Google Scholar 

  159. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid ß-peptide (Aß), retards Aß aggregation, deposition, fibril formation and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    CAS  PubMed  Google Scholar 

  160. Bader M (2010) Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50:439–465

    Article  CAS  PubMed  Google Scholar 

  161. Arima H, Chalmers J (2011) PROGRESS: prevention of recurrent stroke. J Clin Hypertens 13:693–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by European funds from FEDER, through the Programa Operacional Factores de Competitividade—COMPETE 2020; by Portuguese funds from FCT—Fundação para a Ciência e a Tecnologia (Strategic Project: UID/NEU/04539/2013); and by European Social Fund: Fellowships SFRH/BPD/84473/2012 to A. I. Duarte and SFRH/BD/90036/2012 to E. Candeias.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula I. Moreira or Ana I. Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sebastião, I., Candeias, E., Santos, M.S., Oliveira, C.R., Moreira, P.I., Duarte, A.I. (2017). Unpuzzling the Comorbid Type 2 Diabetes and Hypertension-Related Cognitive Dysfunction and Stroke. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics