Skip to main content

Neuroprotection Is Technology, Not Science

  • Chapter
  • First Online:
  • 1274 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

All human clinical trials of neuroprotection after brain ischemia and reperfusion injury have failed. Brain ischemia is currently conceptualized as an “ischemic cascade” and therapy is directed to treating one or another element of this cascade. This approach conflates the science of cell injury with the development of neuroprotective technologies. Here we review a theory that describes the generic nonlinear dynamics of acute cell injury. This approach clearly demarcates the science of cell injury from any possible downstream technological applications. We begin with a discussion that contrasts the qualitative, descriptive approach of biology to the quantitative, mathematical approach used in physics. Next we discuss ideas from quantitative biology that underlie the theory. After briefly reviewing the autonomous theory, we present, for the first time, a non-autonomous theory that describes multiple injuries over time and can simulate pre- or post-conditioning or post-injury pharmacologics. The non-autonomous theory provides a foundation for three-dimensional spatial models that can simulate complex tissue injuries such as stroke. The cumulative theoretical formulations suggest new technologies. We outline possible prognosticative and neuroprotective technologies that would operate with engineering precision and function on a patient-by-patient basis, hence personalized medicine. Thus, we contend that a generic, mathematical approach to acute cell injury will accomplish what highly detailed descriptive biology has so far failed to accomplish: successful neuroprotective technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1(1):36–45

    Article  PubMed  PubMed Central  Google Scholar 

  2. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477

    Article  PubMed  Google Scholar 

  3. Turner RC, Dodson SC, Rosen CL, Huber JD (2013) The science of cerebral ischemia and the quest for neuroprotection: navigating past failure to future success. J Neurosurg 118(5):1072–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu SY, Pan SY (2013) The failure of animal models of neuroprotection in acute ischemic stroke to translate to clinical efficacy. Med Sci Monit Basic Res 19:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jo SK, Rosner MH, Okusa MD (2007) Pharmacologic treatment of acute kidney injury: why drugs haven’t worked and what is on the horizon. Clin J Am Soc Nephrol 2(2):356–365

    Article  PubMed  Google Scholar 

  6. Kloner RA (2013) Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res 113(4):451–463

    Article  CAS  PubMed  Google Scholar 

  7. Freedman LP, Gibson MC, Ethier SP, Soule HR, Neve RM, Reid YA (2015) Reproducibility: changing the policies and culture of cell line authentication. Nat Methods 12(6):493–497

    Article  CAS  PubMed  Google Scholar 

  8. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB (2015) The fickle P value generates irreproducible results. Nat Methods 12(3):179–185

    Article  CAS  PubMed  Google Scholar 

  9. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plant AL, Locascio LE, May WE, Gallagher PD (2014) Improved reproducibility by assuring confidence in measurements in biomedical research. Nat Methods 11(9):895–898

    Article  CAS  PubMed  Google Scholar 

  11. Vasilevsky NA, Brush MH, Paddock H, Ponting L, Tripathy SJ, Larocca GM et al (2013) On the reproducibility of science: unique identification of research resources in the biomedical literature. PeerJ 1, e148

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drummond GB, Paterson DJ, McGrath JC (2010) ARRIVE: new guidelines for reporting animal research. J Physiol 588(pt 14):2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, National Centre for the Replacement, Refinement and Reduction of Animals in Research et al (2011) Animal research: reporting in vivo experiments—the ARRIVE guidelines. J Cereb Blood Flow Metab 31(4):991–993

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 1(2):94–99

    Article  PubMed  PubMed Central  Google Scholar 

  15. DeGracia DJ (2013) A program for solving the brain ischemia problem. Brain Sci 3(2):460–503

    Article  PubMed  PubMed Central  Google Scholar 

  16. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. Part II: a post-ischemic neuronal state space. J Exp Stroke Transl Med 3(1):72–89

    Article  PubMed  PubMed Central  Google Scholar 

  17. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. Part III: therapeutic implications. J Exp Stroke Transl Med 3(1):90–103

    Article  PubMed  PubMed Central  Google Scholar 

  18. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. Part IV: additional considerations. J Exp Stroke Transl Med 3(1):104–114

    Article  PubMed  PubMed Central  Google Scholar 

  19. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. Part I: background and preliminaries. J Exp Stroke Transl Med 3(1):59–71

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nordenskiöld E, Eyre LB (1935) The history of biology, a survey. Tudor, New York, pp 3–629

    Google Scholar 

  21. Kline M (1985) Mathematics and the search for knowledge. Oxford University Press, New York, p 257

    Google Scholar 

  22. Frezza W (2012) The skeptical outsider: how to rescue the life sciences from technological torpor. Updated 13 July 2012. Available from: http://www.bio-itworld.com/BioIT_Article.aspx?id=117147, http://www.bio-itworld.com2013

  23. Bao L, Radish EF (2002) Understanding probabilistic interpretations of physical systems: a prerequisite to learning quantum physics. Am J Phys 70(3):210–217

    Article  Google Scholar 

  24. Newton I, Cohen IB, Whitman AM (1999) The Principia: mathematical principles of natural philosophy. University of California Press, Berkeley, p 966

    Google Scholar 

  25. Weyl H (1934) Mind and nature. University of Pennsylvania Press, Philadelphia, p 100

    Google Scholar 

  26. Hillman H (1972) Certainty and uncertainty in biochemical techniques. Ann Arbor Science, Ann Arbor, p 126

    Google Scholar 

  27. Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81

    Article  CAS  PubMed  Google Scholar 

  28. Biggs N, Lloyd EK, Wilson RJ (1986) Graph theory, 1736-1936. Oxfordshire/Clarendon Press, New York, p 239

    Google Scholar 

  29. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  CAS  PubMed  Google Scholar 

  30. Jacob F, Perrin D, Sanchez C, Monod J (1960) Operon: a group of genes with the expression coordinated by an operator. C R Hebd Seances Acad Sci 250:1727–1729

    CAS  PubMed  Google Scholar 

  31. Strogatz SH (1994) Nonlinear dynamics and Chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading, p 498

    Google Scholar 

  32. Kaplan D, Glass L (1995) Understanding nonlinear dynamics. Springer, New York, p 420

    Book  Google Scholar 

  33. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305(2):695–713

    Article  CAS  PubMed  Google Scholar 

  34. Vaughn MT (2007) Introduction to mathematical physics. Wiley-VCH, Weinheim, p 527

    Book  Google Scholar 

  35. DeGracia DJ, Huang ZF, Huang S (2012) A nonlinear dynamical theory of cell injury. J Cereb Blood Flow Metab 32(6):1000–1013

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton, p 301

    Google Scholar 

  37. Kirino T (2000) Delayed neuronal death. Neuropathology 20(suppl):S95–S97

    Article  PubMed  Google Scholar 

  38. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Article  CAS  PubMed  Google Scholar 

  39. Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med 25(suppl 1):30–34

    Article  CAS  PubMed  Google Scholar 

  40. Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG (1997) Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 40:1–25

    Article  CAS  PubMed  Google Scholar 

  41. Ge P, Zhang F, Zhao J, Liu C, Sun L, Hu B (2012) Protein degradation pathways after brain ischemia. Curr Drug Targets 13(2):159–165

    Article  CAS  PubMed  Google Scholar 

  42. Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N, Vandenabeele P (2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 35:2–13

    Article  CAS  PubMed  Google Scholar 

  43. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3):363–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alonso de Lecinana M, Diez-Tejedor E, Gutierrez M, Guerrero S, Carceller F, Roda JM (2005) New goals in ischemic stroke therapy: the experimental approach—harmonizing science with practice. Cerebrovasc Dis 20(suppl 2):159–168

    Article  PubMed  Google Scholar 

  45. Hermann DM, Bassetti CL (2007) Neuroprotection in the SAINT-II aftermath. Ann Neurol 62(6):677–678, author reply 8

    Article  PubMed  Google Scholar 

  46. Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol 61(5):396–402

    Article  CAS  PubMed  Google Scholar 

  47. Molina CA, Saver JL (2005) Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies. Stroke 36(10):2311–2320

    Article  PubMed  Google Scholar 

  48. Molina CA, Alvarez-Sabin J (2009) Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis 27(suppl 1):162–167

    Article  PubMed  Google Scholar 

  49. Rother J (2008) Neuroprotection does not work! Stroke 39(2):523–524

    Article  PubMed  Google Scholar 

  50. Zhou JX, Brusch L, Huang S (2011) Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS One 6(3), e14752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harston GW, Rane N, Shaya G, Thandeswaran S, Cellerini M, Sheerin F et al (2015) Imaging biomarkers in acute ischemic stroke trials: a systematic review. AJNR Am J Neuroradiol 36(5):839–843

    Article  CAS  PubMed  Google Scholar 

  52. Ward NS (2015) Does neuroimaging help to deliver better recovery of movement after stroke? Curr Opin Neurol 28(4):323–329

    Article  CAS  PubMed  Google Scholar 

  53. Hirano T (2014) Searching for salvageable brain: the detection of ischemic penumbra using various imaging modalities? J Stroke Cerebrovasc Dis 23(5):795–798

    Article  PubMed  Google Scholar 

  54. Brennan KM, Roos MS, Budinger TF, Higgins RJ, Wong ST, Bristol KS (1993) A study of radiation necrosis and edema in the canine brain using positron emission tomography and magnetic resonance imaging. Radiat Res 134(1):43–53

    Article  CAS  PubMed  Google Scholar 

  55. Lapchak PA (2010) Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann Med 42(8):576–586

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

    Article  CAS  PubMed  Google Scholar 

  57. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4(5):273–284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. DeGracia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeGracia, D.J., Taha, D., Anggraini, F.T., Huang, Z. (2017). Neuroprotection Is Technology, Not Science. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics