Development of Millimetric Particle for Biodiesel Production

  • Aminul Islam
  • Pogaku Ravindra


This chapter includes the effect of pH on the gelling behavior, viscosity, rheology, and density of the boehmite suspension prior to the development of millimetric gelled boehmite particles. The shape and size of gelled particles produced from both processes were evaluated using sphericity factor and Tates Law, respectively. In addition, the characteristics of the synthesized particle, such as the structural, morphological, textural properties, were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption–desorption isotherms. The shrinkage (%) of the particle at different preparation steps and the mechanical strength of the particle were also evaluated. The comparison of the particle properties produced from two methods was made to select the suitable method in order for it to be used in subsequent works.


Shear Rate CaCl2 Concentration High Relative Pressure Breakup Length Alginate Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Buelna, G., & Lin, Y. S. (1999). Sol–gel-derived mesoporous γ-alumina granules. Microporous and Mesoporous Materials, 30, 359–369.CrossRefGoogle Scholar
  2. Buelna, G., Lin, Y. S., Liu, L. X., & Litster, J. D. (2003). Structural and Mechanical Properties of Nanostructured Granular Alumina Catalysts. Industrial and Engineering Chemistry Research, 42, 442–447.CrossRefGoogle Scholar
  3. Cejka, J., & Mintova, S. (2007). Perpectives of micro/mesoporous composites in catalysis. Catalysis Reviews, 49, 457–509.CrossRefGoogle Scholar
  4. Chan, E. S., Lee, B. B., Ravindra, P., & Poncelet, D. (2009). Shape and size analysis of ca-alginate particles produced through extrusion-dripping method. Journal of Colloid and Interface Science, 338, 63–72.CrossRefGoogle Scholar
  5. Chhinnan, M. S., Mcwatters, K. H., & Rao, V. N. M. (1985). Rheological Characterization of Grain Legume Pastes and Effect of Hydration Time and Water Level on Apparent Viscosity. Journal of Food Science, 50, 1167–1171.CrossRefGoogle Scholar
  6. Chuah, G. K., Jaenicke, S., & Xu, T. H. (2000). The effect of digestion on the surface area and porosity of alumina. Microporous and Mesoporous Materials, 37, 345–353.CrossRefGoogle Scholar
  7. Cristiani, C., Valentini, M., Merazzi, M., Neglia, S., & Forzatti, P. (2005). Effect of ageing time on chemical and rheological evolution in γ-Al2O3 slurries for dip-coating. Catalysis Today, 105, 492–498.CrossRefGoogle Scholar
  8. Deng, S. G., & Lin, Y. S. (1997). Granulation of sol-gel-derived nanostructured alumina. AIChE Journal, 43, 505–514.CrossRefGoogle Scholar
  9. Dijk, V. H. J. M. P., & Schenk, W. J. (1984). Theoretical and experimental study of one-dimensional syneresis of a protein gel. The Chemical Engineering Journal, 28, 43–50.CrossRefGoogle Scholar
  10. Fauchadour, D., Kolenda, F., Rouleau, L., Barre, L., & Normand, L. (2000). Peptization mechanisms of boehmite used as precursors for catalysts. Studies in Surface Science and Catalysis, 143, 453–461.CrossRefGoogle Scholar
  11. Feng, T., Gu, Z. B., & Jin, Z. Y. (2007). Chemical composition and some rheological properties of Mesona Blumes gum. Food Science and Technology International, 13, 55–61.CrossRefGoogle Scholar
  12. Fennema, O. R. (1975). Freezing preservation. Principles of food science part II: Physical principles of food preservation (pp. 173–215). Marcel Dekker: New York.Google Scholar
  13. Hu, Z., & Srinivasan, M. P. (1999). Preparation of high-surface-area activated carbons from coconut shell. Microporous and Mesoporous Materials, 27, 11–18.CrossRefGoogle Scholar
  14. Johnson, M. F. L., & Mooi, J. (1968). The origin and type of pores in the alumina catalysts. Journal of Catalysis, 10, 342–354.CrossRefGoogle Scholar
  15. Kim, S. S., Choi, J., & Kim, J. (2005). Plasma catalytic reaction of methane over nanostructured Ru/γ-Al2O3 catalysts in dielectric-barrier discharge. Journal of Industrial and Engineering Chemistry, 11, 533–539.Google Scholar
  16. Levin, I., & Brandon, D. (1998). Metastable alumina polymorphs: Crystal structures and transition sequences. Journal of the American Ceramic Society, 81, 1995–2012.CrossRefGoogle Scholar
  17. Li, G., Smith, R. L., Jr., Inomata, H., & Arai, K. (2002). Synthesis and thermal decomposition of nitrate-free boehmite nanocrystals by supercritical hydrothermal conditions. Materials Letters, 53, 175–179.CrossRefGoogle Scholar
  18. Linssen, T., Cassiers, K., Cool, P., & Vansant, E. F. (2003). Mesoporous templated silicates: An overview of their synthesis, catalytic activation and evaluation of the stability. Advances in Colloid and Interface Science, 103, 121–147.CrossRefGoogle Scholar
  19. Mani, T. V., Pillai, P. K., Damodaran, A. D., & Warrier, K. G. K. (1994). Dependence of calcination conditions of boehmite on the alumina particulate characteristics and sinterability. Materials Letters, 19, 237–241.CrossRefGoogle Scholar
  20. Maskara, A., & Smith, D. M. (2005). Agglomeration during the drying of fine silica powders, Part II: The role of particle solubility. Journal of the American Ceramic Society, 80, 1715–1722.CrossRefGoogle Scholar
  21. Mikolajczyk, T., Czapnik, D. W., & Bogun, M. (2004). Precursor alginate fibres containing nano-particles of SiO2. Fibres & Textiles in Eastern Europe, 12, 19–23.Google Scholar
  22. Morch, Y. A., Donati, I., Strand, B. L., & Skjak-Baek, G. (2006). Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 7, 1471–1480.CrossRefGoogle Scholar
  23. Philipse, A. P. (1993). Preparation of boehmite—silica colloids: Rods, spheres, needles and gels. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 80, 203–210.CrossRefGoogle Scholar
  24. Popa, A. F., Rossignol, S., & Kappenstein, C. (2002). Ordered structure and preferred orientation of boehmite films prepared by the sol–gel method. Journal of Non-Crystalline Solids, 306, 169–174.CrossRefGoogle Scholar
  25. Prouzet, E., Khani, Z., Bertrand, M., Tokumoto, M., Guyot-Ferreol, V., & Tranchant, J. F. (2006). An example of integrative chemistry: Combined gelation of boehmite and sodium alginate for the formation of porous beads. Microporous and Mesoporous Materials, 96, 369–375.CrossRefGoogle Scholar
  26. Prouzet, E., Tokumoto, M. & Krivaya, A. (2004). Method for preparing beads containing a crosslinked mineral matrix. Patent No. WO2004009229Google Scholar
  27. Rueb, C. J., & Zukoski, C. F. (1992). Interparticle attractions and the mechanical properties of colloidal gels. Materials Research Society Symposium Proceedings, 249, 279–286.CrossRefGoogle Scholar
  28. Sharma, L. D., Kumar, M., Saxena, A. K., Chand, M., & Gupta, J. K. (2002). Influence of pore size distribution on Pt dispersion in Pt-Sn/Al2O3 reforming catalyst. Journal of Molecular Catalysis A: Chemical, 185, 135–141.CrossRefGoogle Scholar
  29. Siladitya, B., Chatterjee, M., & Ganguli, D. (1999). Role of a surface active agent in the sol-emulsion-gel synthesis of spherical alumina powders. Journal of Sol-Gel Science and Technology, 15, 271–277.CrossRefGoogle Scholar
  30. Song, K. C., & Chung, I. J. (1989). Rheological properties of aluminium hydroxide sols during sol-gel transition. Journal of Non-Crystalline Solids, 107, 193–198.CrossRefGoogle Scholar
  31. Taylor, G. I. (1966). Studies in electrohydrodynamics 1. The circulation produced in a drop by an electric field. Proceedings of the Royal Society of London, 291, 159–166.CrossRefGoogle Scholar
  32. Vazquez, A., Lopez, T., Gomez, R., Bokhimit, M. A., & Novarot, O. (1997). X-ray diffraction, FTIR, and NMR characterization of sol-gel alumina doped with lanthanum and cerium. Journal of Solid State Chemistry, 128, 161–168.CrossRefGoogle Scholar
  33. Wahab, M. A., & Ha, C. S. (2005). Ruthenium-functionalised hybrid periodic mesoporous organosilicas: Synthesis and structural characterization. Journal of Materials Chemistry A, 15, 508–516.CrossRefGoogle Scholar
  34. Wang, Z. M., & Lin, Y. S. (1998). Sol-gel synthesis of pure and copper oxide coated mesoporous alumina granular particles. Journal of Catalysis, 174, 43–51.CrossRefGoogle Scholar
  35. Yang, Z., & Lin, Y. S. (2000). Sol-Gel synthesis of silica/γ-alumina granules. Industrial and Engineering Chemistry Research, 39, 4944–4948.CrossRefGoogle Scholar
  36. Yoldas, B. E. (1975). Alumina sol preparation from alkoxides. American Ceramic Society Bulletin, 51, 289–290.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Aminul Islam
    • 1
    • 2
  • Pogaku Ravindra
    • 1
    • 2
  1. 1.Faculty of EngineeringUniversiti Malaysia SabahKotakinabaluMalaysia
  2. 2.Energy Research UnitUniversity Malaysia SabahKotakinabaluMalaysia

Personalised recommendations