A Machine-Learning Approach to the Automated Assessment of Joint Synovitis Activity

  • Konrad Wojciechowski
  • Bogdan Smolka
  • Rafal CupekEmail author
  • Adam Ziebinski
  • Karolina Nurzynska
  • Marek Kulbacki
  • Jakub Segen
  • Marcin Fojcik
  • Pawel Mielnik
  • Sebastian Hein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9876)


Medical ultrasound imaging is an important tool in diagnosing and monitoring synovitis, which is an inflammation of the synovial membrane that surrounds a joint. Ultrasound images are examined by medical experts to assess the presence and progression of synovitis. Automating image analysis reduces the costs and increases the availability of the ultrasound diagnosis of synovitis and diminishes or eliminates subjective discrepancies. This article describes research that is concerned with the problem of the automatic estimation of the state of the activity of finger joint inflammation using the information that is present in ultrasonography imaging.


Ultrasound Image Local Binary Pattern Automate Assessment Power Doppler Image Synovitis Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research obtained funding from the Norwegian Financial Mechanism 2009–2014 under Project Contract No. Pol-Nor/204256/16/2013. The ultrasound images for the MEDUSA project were created at the Section for Rheumatology; Department for Neurology, Rheumatology and Physical Medicine, 238 Central Hospital, Forde, Norway.


  1. 1.
    Ostergaard, M., Szkudlarek, M.: Ultrasonography: a valid method for assessing rheumatoid arthritis? Arthritis Rheum. 52(3), 681–686 (2005)CrossRefGoogle Scholar
  2. 2.
    Kamishima, T., Tanimura, K., Henmi, M., Narita, A., Sakamoto, F., Terae, S., Shirato, H.: Power Doppler ultrasound of rheumatoid synovitis: quantification of vascular signal and analysis of interobserver variability. Skeletal Radiol. 38(5), 467–472 (2009)CrossRefGoogle Scholar
  3. 3.
    Kamishima, T., Sagawa, A., Tanimura, K., Shimizu, M., Matsuhashi, M., Shinohara, M., Hagiwara, H., Henmi, M., Narita, A., Terae, S., Shirato, H.: Semi-quantitative analysis of rheumatoid finger joint synovitis using power Doppler ultrasonography: when to perform follow-up study after treatment consisting mainly of antitumor necrosis factor alpha agent. Skeletal Radiol. 39(5), 457–465 (2010)CrossRefGoogle Scholar
  4. 4.
    Albrecht, K., Muller-Ladner, U., Strunk, J.: Quantification of the synovial perfusion in rheumatoid arthritis using Doppler ultrasonography. Clin. Exp. Rheumatol. 25(4), 630 (2007)Google Scholar
  5. 5.
    Hoskins, P., Martin, K., Thrush, A.: Diagnostic Ultrasound: Physics and Equipment. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4(2), 490–530 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, 165–187 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. PAMI 12(7), 629–639 (1990)CrossRefGoogle Scholar
  9. 9.
    Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Nonlinear techniques for color image processing, in nonlinear signal and image processing. In: Barner, K.E., Arce, G.R. (eds.) Theory, Methods and Applications, pp. 445–505. CRC Press, Boca Raton (2004)Google Scholar
  10. 10.
    Smolka, B., Venetsanopoulos, A.N.: Noise reduction and edge detection in color images. In: Lukac, R., Plataniotis, K.N. (eds.) Color Image Processing: Methods and Applications, pp. 75–100. CRC Press, Boca Raton (2007)Google Scholar
  11. 11.
    Barner, K.E., Arce, G.R.: Nonlinear Signal and Image Processing. CRC Press, Boca Raton (2004)Google Scholar
  12. 12.
    Malik, K., Smolka, B.: Modified bilateral filter for the restoration of noisy color images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 72–83. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    McDicken, W.N., Anderson, T.: The difference between colour Doppler velocity imaging and power Doppler imaging. Eur. J. Echocardiogr. 3, 240–244 (2002)CrossRefGoogle Scholar
  14. 14.
    Naredo, E., Collado, P., Cruz, A., et al.: Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum. 57, 116–124 (2007)CrossRefGoogle Scholar
  15. 15.
    Qvistgaard, E., Rogind, H., Torp-Pedersen, S., et al.: Quantitative ultrasonography in rheumatoid arthritis: evaluation of inflammation by Doppler technique. Ann. Rheum. Dis. 60, 690–693 (2001)CrossRefGoogle Scholar
  16. 16.
    Cloutier, G., Qin, Z., Garcia, D., et al.: Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity. Ultrasound Med. Biol. 26(9), 1489–1501 (2000)CrossRefGoogle Scholar
  17. 17.
    van Riel, P.L., Schumacher, H.R.: How does one assess early rheumatoid arthritis in daily clinical practice? Best Pract. Res. Clin. Rheumatol. 15, 67–76 (2001)CrossRefGoogle Scholar
  18. 18.
    Osher, S., Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  19. 19.
    Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)CrossRefGoogle Scholar
  20. 20.
    Kawulok, M., Kawulok, J., Smolka, B.: Discriminative textural features for image and video colorization. In: IEICE Transactions on Information and Systems, vol. E95-D, no. 7 (2012). Kawulok, M., Smolka, B.: Texture-adaptive image colorization framework. EURASIP J. Adv. Sig. Process. 99 (2011)Google Scholar
  21. 21.
    Chang, W., Zwicker, M.: Automatic registration for articulated shapes. In: Computer Graphics Forum (Proceedings of SGP 2008), vol. 27, p. 5 (2008)Google Scholar
  22. 22.
    Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: Proceedings of IEEE CVPR, June 2008Google Scholar
  23. 23.
    Segen, J.: Inference of stochastic graph models for 2D and 3D shape. In: Proceedings of NATO Advanced Research Workshop on Shape in Picture, Driebergen, Netherlands (1992)Google Scholar
  24. 24.
    Schapire, R.E.: The boosting approach to machine learning: an overview. In: Workshop on Nonlinear Estimation and Classification, Mathematical Sciences Research Institute (MSRI), Berkeley, CA (2003)Google Scholar
  25. 25.
    Kulbacki, M., Segen, J., Habela, P., Janiak, M., Knieć, W., Fojcik, M., Mielnik, P., Wojciechowski, K.: Collaborative tool for annotation of synovitis and assessment in ultrasound images. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 364–373. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Popowicz, A., Smolka, B.: Bilateral filtering based biomedical image colorization. In: Tavares, J.M.R.S., Natal, A.M.J. (eds.) Computational Vision and Medical Image Processing, pp. 163–169. CRC Press, Boca Raton (2016)Google Scholar
  27. 27.
    Radlak, K., Radlak, N., Smolka, B.: Automatic detection of bones based on the confidence map for Rheumatoid Arthritis analysis. In: Tavares, J.M.R.S., Natal, A.M.J. (eds.) Computatiion Vision and Medical Imge Processing, pp. 215–220. CRC Press, Boca Raton (2016)Google Scholar
  28. 28.
    Nurzynska, K., Smolka, B.: Automatic finger joint synovitis1 localization in ultrasound images. In: Proceedings of SPIE, vol. 9897, pp. 98970N–98970N-11, April 2016. doi: 10.1117/12.2227638

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konrad Wojciechowski
    • 1
  • Bogdan Smolka
    • 2
  • Rafal Cupek
    • 2
    Email author
  • Adam Ziebinski
    • 2
  • Karolina Nurzynska
    • 2
  • Marek Kulbacki
    • 1
  • Jakub Segen
    • 1
  • Marcin Fojcik
    • 3
  • Pawel Mielnik
    • 4
  • Sebastian Hein
    • 5
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Silesian University of TechnologyGliwicePoland
  3. 3.Høgskulen i Sogn og FjordaneSogndalNorway
  4. 4.Helse FørdeFørdeNorway
  5. 5.Medical Technology and Equipment InstituteZabrzePoland

Personalised recommendations